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ABSTRACT  
The escalating impacts of global climate change significantly affect regional hydrological 
systems, particularly in northern areas such as Estonia. This study investigates the hydro l ogical 
sensitivity of Estonian catchments to climatic variability, focusing on the interplay between 
surface water and groundwater. Using data from 42 river catchments, it employs various 
statistical methods in hydrology, emphasizing the autocorrelation function, cross-cor relation 
function, baseflow index, and flow duration curve. The analysis spans the years 2012–2022, 
integrating hydrological, spatial, and water quality parameters. The research identifies four 
distinct hydrological behavior clusters: plateau, sandstone upland, carbonate upland, and 
lowland. Key findings include diverse catchment sensitivities to groundwater recharge, the 
role of baseflow in streamflow stabilization, the memory effect in catchment responses, and 
insights from the flow duration curve on flow variability and extremes. The LightGBM model, 
predicting focus parameters, highlights the critical influence of air tempera ture and snowpack 
on streamflow characteristics. This study underscores the diverse hydro logical sensitivities of 
Estonian catchments to hydroclimatic changes, emphasizing the impor-tance of considering 
catchment-specific characteristics in water resource management and policy-making. Con -
tributing to the broader understanding of hydrological processes, it provides valuable insights 
for future research and environmental planning in the face of climate vari ability and change. 
 

1. Introduction
Global climate change is anticipated to accelerate, with significant changes in pre ­
cipitation patterns and large spatial heterogeneity in temperature increases projected 
across different regions (IPCC 2022). Over the last century, changes in temperature 
and precipitation patterns have disrupted regional hydrological systems, leading to 
alterations in the intensity, frequency, and duration of peak and low flows, with 
increasing occurrences of severe streamflow droughts (Teutschbein et al. 2022, 2015). 
Climate change significantly affects northern hydrology, particularly the accumulation 
and melt of seasonal snow cover, which is crucial for catchment runoff and ground ­
water recharge (Rodhe 1998; Earman and Dettinger 2011; Jenicek et al. 2016). 
Observed and projected changes include reduced snow depth and snow water 
equivalent, altered snowmelt timing, and a shift from snowfall to rain in winter 
(Berghuijs et al. 2014; Meriö et al. 2019; Grogan et al. 2020; Ranasinghe et al. 2021). 
These changes have already decreased peak stream flows and shifted them earlier in 
the year in northern Europe, resulting in lower summer­autumn flows and increased 
spring soil moisture deficits (Blöschl et al. 2019; Douville et al. 2021; Jaagus et al. 
2017; Ruosteenoja et al. 2018; Viru and Jaagus 2020). Winter precipitation is 
projected to increase by up to 10% by 2100, although summer changes remain 
uncertain (increase <5%) (Coppola et al. 2021; Jaagus and Mändla 2014; Ruosteenoja 
and Jylhä 2021). Rising temperatures (2.5–3.8 °C in winter and 2.0–3.4 °C in 
summer) are expected to increase evapotranspiration, reduce summer runoff and 
recharge, and increase water surplus in colder seasons (Barnett et al. 2005; Okkonen 
et al. 2011). Con sequently, both short­ and long­term changes in stream discharge 
and ground water storage are anticipated (Okkonen and Kløve 2011; Donnelly et al. 
2017; Costantini et al. 2023). 
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Groundwater processes, which tend to be slower and less 
uniform than surface water events, lead to prolonged summer 
recessions and decreased late­summer and autumn discharges 
(Vorobevskii et al. 2022). Climate change is expected to sig ­
nificantly alter groundwater levels, aquifer storage, and base ­
flow, mainly due to changes in groundwater recharge timing 
and intensity (Taylor et al. 2013; Smerdon 2017; Wu et al. 
2020; Nygren et al. 2020). In northern Europe and North 
America, studies have demonstrated groundwater systems 
to be particularly sensitive to climate change. For instance, 
groundwater streams in northwestern USA are more sensitive 
to climate change than runoff­dominated streams (Jefferson 
et al. 2008). In northern Finland, warmer climates are pre ­
dicted to increase groundwater recharge and shift peak water 
levels earlier, affecting groundwater–surface water inter­
actions (Okkonen and Kløve 2011). Research on the Baltic 
States’ groundwater anticipates a general rise in levels with 
min imal seasonal variation (Babre et al. 2023), while in 
Estonia, a 20–40% increase in groundwater recharge is pro ­
jected under warmer climates (Vallner 1998).  

There was a necessity to offer a general evaluation of the 
hydrological sensitivity of Estonian surface water and as ­
sociated groundwater bodies, including their interactions, in 
the context of patchy and scarce dedicated monitoring data. 
This challenge led to the development of the approach used 
in this study, which draws partly on the findings of Koit 
(2022) and Koit et al. (2022) regarding the auto­ and cross­
correlation functions of Estonian lowland rivers. The study’s 
approach is based on the assumption that the characteristics 
of the interplay between surface water and groundwater can 
be identified by analyzing the catchment’s streamflow hydro ­
graphs (Killian et al. 2019; Teutschbein et al. 2015). We set 
out to examine how different gauged catchments in Estonia 
responded to hydroclimatic variability on a water­yearly scale 
during the period of 2012–2022 by quantifying various 
aspects of streamflow, such as its memory (Schuler et al. 
2022; Sutanto and van Lanen 2022), the proportion of ground ­
water runoff (baseflow), and the sensitivity of streamflow to 
groundwater recharge events.  

The autocorrelation function (ACF) characterizes the 
degree of linearity in a time series, indicating the extent to 
which a data point is affected by previous data points, often 
referred to as the memory effect (Bailly­Comte et al. 2008; 
Mangin 1984; Schuler et al. 2022). The concept of memory 
effect, as reflected through the ACF, is influenced by the 
effective storage of particular surface water and the associated 
groundwater catchment, with higher storage leading to greater 
memory or inertia in discharge. Catchments featuring greater 
memory can be considered less susceptible to meteorological 
drought compared to those with lower memory. As ground ­
water storage plays a crucial role in streamflow memory 
(Cochand et al. 2019), the contribution of groundwater to 
total streamflow should be estimated. The ratio of baseflow 
to total streamflow, defined as the baseflow index (BFI), 
represents the slow or delayed contribution to streamflow that 
is influenced by catchment hydrogeology. Complementary to 
the ACF, the BFI helps validate the presence of periodicity 
or persistence observed in the autocorrelation function, pro­

viding additional evidence of groundwater dynamics influenc ­
ing streamflow patterns.  

Furthermore, the reaction and sensitivity of streamflow 
dynamics to recharge events could be quantified to assess the 
interconnection of surface water and groundwater in a catch ­
ment. We applied the cross­correlation function (CCF) to 
quantify the linear dependency of discharge on the recharge 
signal. To overcome the bottlenecks associated with using 
precipitation as an input to the CCF in a climate where some 
precipitation falls as snow and is therefore tied up in the snow ­
pack for some time, as pointed out by Koit et al. (2022) and 
Pärn et al. (2024), we experimentally used a modeled ground ­
water recharge signal as the input in this study. To support the 
findings from the ACF, CCF, and BFI, we also used the flow 
duration curve (FDC), another robust hydrological method, 
for reflecting the variability within the stream flow regime. 
FDCs enable the delineation of flow permanence and the 
identification of hydrological extremes. In the context of cli ­
mate change, the FDC is instrumental in revealing the alter ­
ations in flow regimes and aiding in the understanding of 
how catchment characteristics modulate the response to cli ­
matic variability (Vogel and Fennessey 1994) . To evaluate the 
performance of the focus parameters – ACF, CCF, BFI, and 
FDC –, we applied a variety of other hydro logical and spatial 
analysis­derived statistics. 

2. Materials and methods 
2.1. Studied catchments 
In this study, the hydrological sensitivity of 42 gauged river 
catchments in Estonia, ranging from 52 to 1813 km2 in size, 
was assessed (Fig. 1; Table S1). Estonia is located in the bor ­
eal biogeographical region between high latitudes 57°30’ N 
and 59°49’ N, and lies in the transition zone of the Baltic Sea 
maritime and continental climate regions (i.e., Cfb and Dfb 
Köppen–Geiger climate regions; Kottek et al. 2006; Beck et 
al. 2018). Based on the ERA5­Land dataset (Muñoz Sabater 
2019), the mean annual precipitation during 2012–2022 was 
747 mm, with about 18% falling as snow. On average, around 
537 mm of precipitation was removed by total evaporation, 
leaving 210 mm for the generation of surface water and 
groundwater runoff. The most important hydrological events 
of the water year are the spring snowmelt floods (Järvet 
1998). Furthermore, seasonal hydrological sensitivity is in ­
fluenced by snow deposition in the winter and evapotran ­
spiration during the summer season (Koit et al. 2022). 

Estonia’s geological and hydrogeological context is de ­
fined by its location in the NW part of the East European 
Platform. In Estonia, the low­lying monoclinal platform (mean 
elevation 50 m asl; max 317 m asl in SE uplands) consists of 
Neoproterozoic and Paleozoic sedimentary rocks, which host 
multiple aquifer systems belonging to the Baltic Artesian 
Basin. Silurian and Ordovician carbonate rocks predom i ­
nantly outcrop on the N–NW half and Devonian sandstones 
in the S–SE half of the territory. The sedimentary rocks are 
overlain by Quaternary deposits, formed mainly during the 
Late Weichselian glaciation. The territory of Estonia was degla ­
ciated between 15 to 13 ka BP (Kalm 2006). The Quaternary 
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cover, 5–10 m thick on average (up to 100–200 m thick in the 
SE uplands), consists of different types of sediments by gen ­
esis, among which the most widespread are glacial tills, gla ­
ciolacustrine sands, silts and clays, and glaciofluvial sands and 
gravels (Raukas and Kajak 1997). Throughout the Holocene, 
cool and humid climate has been favorable to the devel ­
opment of vast peatlands, which cover up to 20% of the ter ­
ritory, usually overlying Quaternary sediments with poor per ­
meability. 
 
2.2. Data 
Data on streamflow, land cover, geology, hydrogeology, water 
quality, and hydroclimate for 42 Estonian catchments (Table S1) 
were collected from various public databases. The full data ­
set contained 97 parameters (Tables S2 and S6), from which 
further selections were made according to the purpose of the 
specific analysis. Daily streamflow and water temperature 
time series for the 2012–2022 water years were provided by 
the Estonian Environment Agency. Water quality data were 
ac quired from the Environmental Monitoring Information 
System database. Spatial data of catchment topography, geo ­
logy, hydrogeology, and land use/cover were extracted from 
various maps made publicly available at Geoportal by the 
Estonian Land Board. Monthly climatic data (2 m air tem ­
pera ture, total precipitation (P), total evaporation (E), snow 
depth (SDE), and snow water equivalent (SWE)) from the 
ERA5­Land dataset by Muñoz Sabater (2019) were also 

used. The time­variable data were averaged by water years 
(1 October – 30 September). All analyzed parameters and 
their abbreviations are listed and defined in Table S6. 
 
2.3. Methods  
 Time series analysis 
The analysis of daily streamflow time series recorded at the 
42 gauging stations forms the basis of the study. In the fol ­
lowing, we describe the methodology for calculating the focus 
parameters and other relevant metrics. Detailed descriptions 
of all parameters discussed in this work are provided in the 
supplementary content. Time series analysis was performed 
using Microsoft Excel software (Microsoft Corporation, 
USA), unless noted otherwise. 

To characterize streamflow memory, ACF lags (k) were 
calculated using daily streamflow data. The ACF calculations 
were carried out using R, v. 4.2.3 (R Core Team, Austria), and 
RStudio, v. 2023.03.0+386 (Posit Team, USA), applying a 
threshold value of rk < 0.2, widely used in earlier studies (Koit 
et al. 2022; Mangin 1984; Schuler et al. 2022). The formula 
for ACF according to Larocque et al. (1998) is as follows: 
 
 
 
with 
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𝑟𝑘 = 𝐶𝑘𝐶0, 
𝐶𝑘 = 1𝑛 ∑ (𝑥𝑡 𝑛 − 𝑘

𝑡 = 1 − 𝑥 )(𝑥𝑡 + 𝑘 − 𝑥 ), 
,                                    (1)

,            (2)

 
Fig. 1.  Selected catchments and hydrological gauging stations analyzed in this study. 



where rk is the autocorrelation at lag k, k is the time delay 
from 0 to maximum lag time, Ck is the covariance at lag k, 
C0 is the variance at lag k, n is the length of the studied time 
series, xt is the series value at time t, and x– is the mean value 
of the series. 

The BFI was calculated using the approach of Ladson et 
al. (2013), applying the Lyne and Hollick (1979) recursive 
digital filter: 

 
 

otherwise
 

 
  
where qf(i) is the quickflow response at the i­th time step, q(i) 
is the total streamflow at the i­th time step, qb(i) is the base ­
flow at the i­th time step, and α (0.91) is the filter para meter 
that alters the shape of separation. The filter is applied mul ­
tiple times on the dataset. In the case of daily data, three 
passes (forward, backward, and forward) are commonly used. 
The BFI is defined as the ratio of baseflow volume to total 
streamflow volume over a specified period (water year). 

The sensitivity of streamflow to modeled groundwater 
recharge was analyzed by calculating the CCF. The CCF 
quan tifies the linear dependency between two time series, xt 
and yt (Larocque et al. 1998). The interpretation of the CCF 
allows to assess the transfer of pressure impulse of ground ­
water recharge to the surface water catchment (Bailly­Comte 
et al. 2008; Mayaud et al. 2014; Worthington 2019). Accord ­
ing to Larocque et al. (1998), the formula for cross­correlation 
is as follows: 
 
 
 
with 
 
 
 
where Cxy(k) is the cross­correlogram, and σx and σy are the 
standard deviations of the time series xt and yt , respectively.  

The groundwater recharge estimates were modeled using 
the Precipitation­Runoff Modeling System (PRMS­IV), devel ­
oped by Markstrom et al. (2015), as implemented by Hunt 
(2021) and Pärn et al. (2024). The PRMS was constructed for 
the Selja River catchment located in northern Estonia (Varangu 
gauging station in Fig. 1), and the modeled recharge estimates 
were used for all the assessed river catchments. A detailed 
description of the model’s structure, parameters, and cali ­
bration results are described in Hunt (2021).  

CCF correlation coefficients (r) and lag times (k) between 
the modeled groundwater recharge and streamflow were 
calculated for four different time periods: the entire dataset 
period (2012–2022; CCF mean r/k), each water year (CCF 
wy r/k), autumn floods (CCF autumn r/k), and spring floods 
(CCF spring r/k). The CCF calculations were performed using 
Python 3.9.13 (Rossum and Drake 2009) and the following 
libraries: Pandas (McKinney 2010), NumPy (Harris et al. 
2020), scikit­learn (Pedregosa et al. 2011), Matplotlib (Hunter 
2007), and SciPy (Virtanen et al. 2020). 

The KarstID R Shiny application, developed by Cinkus 
et al. (2023), was used to carry out further discharge time 
series analyses on the whole period of 2012–2022 to calculate 
various parameters (regulation time, k max, α mean, IR, and 
SVC) for characterizing the hydrological functioning of 
the studied catchments. The regulation time, as defined by 
Larocque et al. (1998), was obtained from the spectral density 
function and quantifies the duration of the input signal’s 
influence, providing insight into the impulse response length 
within the hydrological system. The indicator k max was ex ­
tracted from the analyzed recession curves and char acterizes 
the capacity of dynamic storage in the catch ment. The re ­
cession coefficient α mean characterizes the drainage of the 
catchment storage. The indicator IR allows to estimate a 
system’s capacity to filter and attenuate the pre cipitation 
signal. The spring variability coefficient (SVC) is the ratio 
between Q90 and Q10 (Q10/Q90) that serves as another 
indicator of flow variability. 

We calculated the seven­day mean annual minimum 
discharge (Q MAM7) as a more robust low­flow statistic in 
com parison to the one­day minimum. We used it in com ­
bination with the mean discharge (Q mean) to calculate a ratio 
(Q MAM7/Q mean), serving as an indicator of low­flow 
sensi tivity, similar to Stoelzle et al. (2020). 

The definition of the number of drought days by Pärn and 
Mander (2012) was used as the count of days during a water 
year when the flow rate falls below 10% of the average flow 
rate during the summer half­year (April–September). The 
anal ysis was carried out in Python 3.9.13 (Rossum and Drake 
2009), using the Pandas library (McKinney 2010). 

To evaluate the sensitivity of streamflow to changes in 
precipitation and total evaporation, the median precipitation 
(εP–Q) and total evaporation (εE–Q) elasticity of runoff were 
calculated after Sankarasubramanian et al. (2001). The equa ­
tions for the precipitation elasticity of runoff (7) and total 
evaporation elasticity of runoff (8) are as follows: 
 
 
 
 
  
where εP–Q is the precipitation elasticity of runoff (unitless), 
Q (mm) is runoff, P (mm) is precipitation, and E (mm) is 
evaporation. In the case of the latter, the total evaporation 
values from the ERA5­Land dataset were used. Water­yearly 
median elasticity values were calculated using monthly 
precipitation, evaporation, and streamflow amounts. 

To assess the efficiency of the studied catchments, the 
effective catchment index (ECI) was calculated as described 
by Liu et al. (2020). The ECI is defined as follows: 
 

 
where Q is the long­term mean discharge, P is the sum of 
precipitation, and AET is the actual evapotranspiration. In the 
case of the latter, the total evaporation values from the ERA5­
Land dataset were used. Positive and negative ECI values 
indicate a streamflow excess or deficit, respectively, in rela ­
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𝑞𝑓(𝑖) = {𝛼𝑞𝑓(𝑖 − 1) + (1 + 𝛼)2 [𝑞(𝑖) − 𝑞(𝑖 − 1)] for 𝑞𝑓(𝑖) > 0,0  , (3)

𝑞𝑏(𝑖) = 𝑞(𝑖) − 𝑞𝑓(𝑖),              (4)

𝑟𝑥𝑦(𝑘) = 𝐶𝑥𝑦(𝑘)𝜎𝑥𝜎𝑦 , ,                               (5)

𝐶𝑥𝑦(𝑘) = 1𝑛 ∑ (𝑛 − 𝑘
𝑡 = 1 𝑥𝑡 − 𝑥 )(𝑥𝑡 + 𝑘 − 𝑦 ), ,            (6)

𝜀𝑃−𝑄(𝑃, 𝑄) = (𝑑𝑄/𝑄𝑑𝑃/𝑃 = 𝑑𝑄𝑑𝑃 𝑃𝑄),             (7)

            (8)

𝐸𝐶𝐼 = log ( 𝑄𝑃−𝐴𝐸𝑇),             (9)

𝜀𝐸−𝑄(𝐸, 𝑄) = (𝑑𝑄/𝑄𝑑𝐸/𝐸 = 𝑑𝑄𝑑𝐸 𝐸𝑄), 



tion to the climatic input. The average net quantity of ground ­
water imports and exports in the catchment is shown by the 
water balance deviation. 

To further characterize the dominant trends in the stream ­
flow regime of the studied catchments, we calculated the 
linear slopes of the <Q10 (FDC <Q10) and Q50–Q100 (FDC 
Q50–Q100) segments of the FDC, using standardized daily 
discharge time series of 2012–2022. The FDC analysis was 
carried out in Python 3.9.13 (Rossum and Drake 2009), using 
the Pandas (McKinney 2010) and NumPy (Harris et al. 2020) 
libraries. 
 
 Catchment characteristics 
All analyses with spatial data were performed using ArcGIS 
Pro 3.1.0 software (ESRI 2023). The mean and standard 
deviation (SD) of catchment elevation, and the stream gra ­
dient were extracted from the 25­meter digital surface 
elevation model of Estonia provided by the Estonian Land 
Board. The percentage of land cover in the catchments was 
extracted from the Estonian Basic Map 1:10000 (Estonian 
Land Board). 

The percentage coverage of the dominant Quaternary 
sedimentary cover types (alvar, glaciofluvial, glaciola cus ­
trine, peat, glacial, marine) was extracted from the 1:400000 
Geological Map of Estonia (Estonian Land Board). Average 
Quaternary cover thickness values for all the catch ments were 
obtained from the Quaternary cover thickness layer of the 
hydrogeological model of the Baltic Artesian Basin by 
Virbulis et al. (2013). 

The aquifer specific yield score was calculated based on 
the specific yield values reported in the 1:400000 hydro geo ­
logical map of Estonia (Estonian Land Board). First, the areal 
coverage percentage of each specific yield zone in the catch ­
ment was calculated. Each specific yield zone was then as ­
signed a weight and multiplied by its percentage coverage in 
a particular catchment (the weights and yield ranges are 
shown in Table S7). The resulting weight fractions were sum ­
med up as a unitless parameter. A higher value indicates better 
transmissivity of the catchment’s aquifers, and vice versa. 
The groundwater protection score was calculated in the 
same way, based on the 1:400000 hydrogeological map of 
Estonia (Estonian Land Board). A higher value indicates a 
higher degree of protection of catchment’s aquifers and vice 
versa. 

By subtracting the groundwater head elevation, obtained 
from the 1:400000 hydrogeological map of Estonia (Estonian 
Land Board), from the surface elevation of the 25­meter 
digital surface elevation model of Estonia (Estonian Land 
Board), the mean and SD depth to the groundwater level of 
the first bedrock aquifer from the ground surface (GWL depth 
mean/SD) was calculated. 
 
 Multivariate analysis 
The multivariate relationships of the mean values (2012–2022 
water year mean) of 70 hydrological, spatial, and water 
quality parameters (listed in Table 1) in the 42 catchments 
were evaluated through factor analysis (n = 70 × 42). For 
further analysis, the catchments were clustered using agglom ­
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  Factors D1 D2 

  Variability, % 26.379 20.993 

  Cumulative, % 26.379 47.372 

To
po

gr
ap

hy
, l

an
d 

co
ve

r, 
 

an
d 

po
pu

la
tio

n 

Stream gradient   0.034 �0.433 

Catchment elevation mean �0.901 �0.068 

Catchment elevation SD �0.695 �0.383 

Peatland   0.373   0.090 

Arable land �0.420   0.457 
Forest   0.350 �0.385 
Drainage   0.577 �0.371 

Water use �0.272   0.280 
Population density �0.346   0.288 

H
yd

ro
lo

gy
 

Total runoff   0.574   0.437 

BF runoff �0.078   0.677 
ACF wy k �0.153   0.891 
ACF k CV �0.128 �0.760 
Regulation time �0.232   0.887 
k max �0.813   0.130 

� mean   0.715 �0.378 

IR �0.009 �0.215 
Q SD   0.096 �0.087 

Q CV   0.875 �0.238 

SVC   0.884   0.011 

CCF autumn r   0.479 �0.635 
CCF autumn k �0.446   0.092 

CCF wy r   0.185 �0.476 
CCF wy k �0.600   0.386 

CCF mean r   0.677 �0.309 

CCF mean k �0.374   0.052 

CCF spring r   0.054 �0.757 
CCF spring k �0.215   0.723 
FDC <Q10 �0.270   0.774 
FDC Q50�Q100   0.701 �0.400 

BFI �0.892   0.323 

BFI CV   0.751 �0.275 

Q MAM7/Q mean �0.912   0.076 

Qspc mean   0.592   0.462 

ECI   0.570   0.335 

Q min/Q mean �0.870   0.067 

Runoff/P   0.592   0.422 

�P�Q �0.065 �0.334 
�E�Q   0.860   0.003 

Drought days   0.849 �0.090 

DoY Q max �0.492   0.052 

Table 1. Factor pattern of the 70 parameters after Varimax rotation 
(D1 and D2). Variables with the highest squared cosine values 
corresponding to a particular factor are highlighted in bold 

Continued on the next page 



erative hierarchical clustering (AHC) based on multivariate 
similarities. The AHC employed Euclidean distance as the 
measure of dissimilarity between data points. The agglomer ­
ation technique of choice was Ward’s method, which priori ­
tizes minimal increases in total within­cluster variance during 
cluster merging. To pinpoint the optimal number of clusters, 
we relied on the adapted Calinski and Harabasz index, which 
assesses clustering quality based on the ratio of between­
cluster to within­cluster variance. Varimax rotation was ap ­
plied to improve the interpretability by maximizing the vari ­
ance of squared factors loadings by column. For a given 
factor, high loadings become higher and low loadings be ­
come lower. The analysis was carried out using the XLSTAT 
Forecast 2023.1.3.1407 software (Lumivero 2023). 

 LightGBM modeling 
To understand the influence of selected hydroclimatic factors 
on our focus parameters (ACF wy k, BFI, CCF mean k, CCF 
mean r, CCF wy k, CCF wy r, CCF autumn k, CCF autumn r, 
CCF spring k, CCF spring r, FDC <Q10, and FDC Q50–
Q100), the LightGBM (light gradient­boosting machine) was 
employed. LightGBM is a distributed, high­performance 
gradient boosting framework based on decision tree algo ­
rithms, designed specifically to be efficient and scalable (Ke 
et al. 2017). Prior to modeling, the dataset was standardized 
to have zero mean and unit variance. This ensures that all fea ­
tures have equal scales, which can enhance the stability and 
interpretability of the model. 

The LightGBM model was configured with a specific set of 
hyperparameters, including num_leaves = 31, learning_rate = 
0.05, and n_estimators = 1000. These were selected based on 
preliminary testing. The model was trained using the squared 
error (l2) as the objective function. A random subset con ­
taining 20% of the data was set aside for validation. The 
performance of the model was assessed on this validation set 
after training. Mean squared error (MSE) and R­squared (R²) 
were computed to evaluate the model’s accuracy and pre ­
dictive capability. 

To interpret the influence of each hydroclimatic factor, 
feature importance was assessed by evaluating the gain and 
split count metrics. Furthermore, to provide a more detailed 
breakdown of how each feature impacts each prediction, 
SHAP (SHapley Additive exPlanations) values were com ­
puted. SHAP values are grounded in game theory and offer 
insights into how each feature contributes, either positively 
or negatively, to the predictive outcome (Lundberg and Lee 
2017). 

The entire analysis was conducted in Python 3.9.13 
(Rossum and Drake 2009), leveraging the capabilities of 
LightGBM (Ke et al. 2017), scikit­learn (Pedregosa et al. 
2011), and SHAP (Lundberg and Lee 2017) packages. 

3. Results and discussion 
3.1. General multivariate characterization of studied  
       catchments 
Two Varimax­rotated factor components, D1 and D2 (ex ­
plain ing 26.4% and 21% variability, respectively), were ex ­
tracted from a selection of 70 streamflow and catchment­
derived parameters listed in Table 1. Notably, factor D1 exhibits 
strong loadings for parameters related to streamflow dy namics, 
such as Q CV, Q MAM7/Q mean, SVC, CCF mean r, εE–Q, 
drought days, SEC CV, k max, BFI, α mean, etc. The catch ­
ments positively correlating with factor D1 are at lower 
elevations, flatter, and underlain by low­ to medium­yielding 
carbonate rock aquifers with shallow groundwater levels. 
These corresponding catchments also have a higher propor ­
tion of peatlands, forests, peat soils, and artificial drainage, 
which likely contribute to higher mean values of chemical 
oxygen demand (CODMn) due to enhanced leaching from 
organic soils. Such catchments are characterized by the most 
sensitive hydrology (high values for α mean, CCF mean r, 
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 Table 1. Continued 

  Factors D1 D2 

  Variability, % 26.379 20.993 

  Cumulative, % 26.379 47.372 

W
at

er
 q

ua
lit

y 

CODMn mean   0.823 �0.162 

Ntot mean   0.083   0.709 
Ptot mean   0.045 �0.198 
SO4 mean   0.367   0.714 

Cl mean �0.003   0.281 
HCO3 mean �0.306   0.411 
SEC mean �0.063   0.578 
SEC CV   0.464   0.146 

Water temp mean   0.017 �0.279 
Water temp CV   0.268 �0.510 

H
yd

ro
ge

ol
og

y 

Dominant bedrock geology �0.623 �0.628 
Carbonate very high specific 
yield 

�0.032   0.668 

Carbonate low specific yield   0.626   0.341 

Carbonate medium specific  
yield 

  0.392   0.260 

Carbonate high specific yield   0.319   0.640 
Sandstone high specific yield �0.540 �0.487 

Sandstone low specific yield �0.427 �0.648 
Sandstone high medium  
specific yield 

�0.429 �0.732 

Aquifer specific yield score �0.059   0.500 
GWL depth mean �0.671 �0.156 

GWL depth SD �0.656 �0.507 

Groundwater protection score �0.284 �0.721 

Q
ua

te
rn

ar
y 

co
ve

r 

Quaternary cover thickness �0.440 �0.736 
Alvar   0.165   0.561 
Glaciofluvial �0.586 �0.031 

Glaciolacustrine   0.063 �0.576 
Peat   0.547   0.287 

Glacial till �0.513   0.122 

Marine   0.608   0.119 

 



Q CV, SVC, εE–Q, drought days, SEC CV, FDC <Q10, etc.), 
and modest storage capacity (low k max, BFI). The catch ­
ments corresponding to D1 can be relatively efficient (high 
ECI), and in this respect, the catchments of the West 
Estonian Archipelago stand out in particular (they are more 
likely to gain additional groundwater contribution from 
neighboring surface catchments). The catchments with a 
strong negative correlation to D1 are generally situated at 
higher elevations, underlain by high­yielding sandstone 
aquifers, and feature a higher probability of glaciofluvial 
sediments and a larger proportion of BFI. 

The factor D2 exhibits significant positive representations 
from variables such as ACF wy k, regulation time, FDC 
<Q10, CCF spring k, and baseflow (BF) runoff, and the 
occurrence of high­yielding carbonate rock and sandstone 
aquifers, which is indicative of greater regulation, storage 
capacity, and retention of water in the catchment. These char ­
acteristics contribute to greater streamflow memory. Due to 
the presence of more fertile soils (e.g., Luvisols, Mollic 
Cambrisols) in areas underlain by high­yielding carbonate 
aquifers, the catchments positively correlating with D2 
usually feature a higher percentage of arable land, along with 
higher and more stable loads of dissolved solids (including 
total nitrogen, Ntot mean). On the other hand, the catchments 
with negative correlation have a thicker Quaternary sedi ­
mentary cover and are underlain by sandstone aquifers with 
a greater depth to the groundwater level (i.e., a thicker vadose 
zone). Quaternary cover thickness and deeper vadose zone 
also contribute to higher groundwater protection values. 

The above­described 70 parameters (Table 1) were further 
analyzed using the AHC to classify the studied catchments. 
The AHC classified the 42 catchments into four clusters (Fig. 2; 
Table S1), which were named as follows: plateau (1), sand ­
stone upland (2), carbonate upland (3), and lowland (4). 

The plateau (1) cluster comprises the catchments with 
relatively flat topography located on the Harju and Viru pla ­
teaus, and the neighboring plains (Fig. 2). In terms of average 
elevations, these watersheds fall between highlands and 
lowlands (Fig. 3a). The common denominator of this cluster 
is the articulation of the landscape (cuesta­like scarps, hil l ­
ocks, alvars, and mire basins, as described in Fig. 3), formed 
during the gradual retreat of the earlier stages of the Baltic 
Sea (Fig. 3e, g). The cluster, dominated by medium­yielding 
carbonate aquifers (Fig. 3h), exhibits a combination of hydrol ­
ogical characteristics resulting from the interaction between 
mire basins with poor infiltration capacity and elevated 
karstified bedrock hillocks (Fig. 3d). Due to the relatively thin 
Quaternary cover (Fig. 3c), groundwater is generally rather 
weakly protected (Fig. 3f). The important role of wetlands is 
also indicated by CODMn mean values that are slightly 
higher than in the upland clusters (as seen from the significant 
contribution from the D1 factor in Tables 1 and S1). 

The sandstone upland (2) cluster groups together the more 
elevated (Fig. 3a) SE Estonian catchments (Fig. 2) with pro ­
nounced gradients (Fig. 3b), underlain by sandstone aquifers 
(Fig. 3h), and a relatively thick Quaternary cover (Fig. 3c). 
These catchments exhibit a somewhat more damped hydrol ­
ogical response due to the thick vadose zone and dominant 

intergranular porosity (Fig. 3d, h). Thus, these aquifers have 
relatively well protected groundwater (Fig. 3f). 

The carbonate upland (3) cluster comprises the catch ­
ments of the Pandivere Upland (Fig. 2) in NE Estonia. These 
catchments are characterized by a significant contribution of 
high­yielding karst aquifers (Fig. 3d, h). Unlike the sandstone 
upland (2) cluster, the thickness of the Quaternary cover is 
significantly thinner, usually 2–10 m (Fig. 3c). Due to the 
higher mean altitude of the catchments (Fig. 3a), there are 
fewer glaciolacustrine sediments deposited, and the shares of 
poorly drained depressions and peatlands are lower com ­
pared to the plateau (1) and lowland (4) catchments. This leads 
to more efficient infiltration but also makes the aquifers more 
vulnerable, as manifested in groundwater quality (Fig. 3f). 
As the upland has preferable conditions for agriculture, there 
are problems with high nitrogen levels, as seen from the 
significant contribution from the D2 factor (Tables 1 and S1). 

The lowland (4) cluster represents the flat and low­lying 
catchments (Fig. 3a, b) in W Estonian lowlands and the West 
Estonian archipelago (Fig. 2). These areas have only rel ­
atively recently emerged above the Baltic Sea level due to 
post­glacial isostatic land uplift. In this cluster, carbonate 
aquifers are dominant, especially in the higher areas of the 
islands, where they can be fairly high­yielding (Fig. 3d, h). 
Albeit with a similar thickness as in clusters 1 and 3 (Fig. 3c), 
the Quaternary sedimentary cover here is more clayey than 
in the higher areas, as evidenced by higher groundwater pro ­
tection scores (Fig. 3f), and marine sediments also occur more 
frequently (Fig. 3g). The land cover in the lowland (4) cluster 
is dominated by peatlands and forests on artificially drained 
peat soils (Fig. 3e, g). Therefore, the highest CODMn mean 
values occur in this cluster, as seen from the significant 
contribution from the D1 factor (Tables 1 and S1). 

Nõges et al. (2022) also clustered 16 Estonian surface 
watersheds, using parameters such as catchment area, land 
use, land cover, population density, etc., resulting in three 
clusters. The authors then characterized the clusters with an em ­
phasis on the manifestations of anthropogenic impact through 
relevant nutrient loadings. The clustering was significantly 
different from ours: rivers in the same cluster in some cases 
did not have a clear resemblance, which would have resulted 
from the similar hydrogeology or hydrological behavior of 
the catchments. For example, some carbonate upland (3) and 
sandstone upland (2) rivers fell into the same cluster.  
 
3.2. The main statistical relationships of the focus  
        parameters 
This chapter covers the general findings based on the 2012–
2022 mean values of the focus parameters (ACF, BFI, CCF, 
and FDC). The emphasis is set on the streamflow regime, its 
relationship with groundwater contributions to streamflow, 
and the sensitivity of streamflow to groundwater recharge 
signals. Spearman’s correlation analysis was performed to 
evaluate the relationships of ACF, BFI, CCF, and FDC 
metrics with other streamflow time series and catchment­
derived parameters, based on the mean values (n = 42) for the 
2012–2022 water year period. The correlation analysis results 
are shown in Table S3. 
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 Autocorrelation function 
Catchments exhibit a memory effect in streamflow, closely 
linked to how they regulate discharge, as evidenced by the 
strong correlation between ACF wy k and regulation time 
(day) (ρ = 0.94, p < 0.05; Table S3) (Larocque et al. 1998). 
This effect, indicative of catchment memory, is amplified in 
systems with substantial effective storage and notable 
groundwater contributions, as demonstrated by positive 
correlations with BF runoff (ρ = 0.7, p < 0.05) and flatter 
slopes of FDC <Q10 (ρ = 0.83, p < 0.05). Interestingly, longer 
ACF lags align with extended spring CCF lags (ρ = 0.83, p < 

0.05), yet are inversely related to CCF r (ρ = –0.68; ρ = –0.63, 
p < 0.05 for both), pointing to intricate seasonal dynamics. 
Stable catchments exhibit a more pronounced streamflow 
memory, emphasized by a negative correlation with ACF lag 
CV (ρ = –0.67, p < 0.05). In addition, relationships with 
specific geological features are seen. A significant positive 
relationship was found between ACF lag and very high­
yielding carbonate aquifers (ρ = 0.52, p < 0.05), while 
negative relationships were observed with thick Quaternary 
cover (ρ = –0.56, p < 0.05) and the presence of sandstone 
aquifers (ρ = –0.51, p < 0.05). 
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Fig. 2.  Four catchment clusters separated using agglomerative hierarchical cluster analysis. 



 Baseflow index 
Baseflow mitigates streamflow variability, as shown by the 
strong negative correlation of the BFI with measures such as 
Q CV (ρ = –0.97, p < 0.05) and SVC (ρ = –0.75, p < 0.05; 
Table S3). Higher BFI values, indicating increased ground ­
water contributions, buffer against extreme low flows, with 
minimum streamflow values approaching the mean (Q MAM7/ 
Q mean: ρ = 0.9, p < 0.05; Q min/Q mean: ρ = 0.88, p < 0.05). 
This stability, often a function of substantial catchment 
storage (positive correlation with k max, ρ = 0.83, p < 0.05), 
manifests in damped responses to external stimuli. The 

dampening effect is further reflected in correlations with CCF 
metrics (ρ = 0.64; ρ = 0.42; ρ = 0.42; p < 0.05 for all) and 
fewer drought days (ρ = –0.82, p < 0.05). 
 
 Cross-correlation function 
There was a general inverse relationship between ACF, BFI, 
and BF runoff with respect to all four (mean, water year, 
autumn, and spring) CCF r metrics (Table S3). Thus, in catch ­
ments where the memory effect and baseflow contribution 
are greater (i.e., streamflow regime is more stable), there 
exists lower sensitivity to groundwater recharge events. 
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Fig. 3.  Catchment elevation (a), stream gradient (b), Quaternary cover thickness (c), aquifer specific yield score (d), land cover and 
artificial drainage (e), groundwater protection score (f), Quaternary cover types (g), and distribution of bedrock aquifer types (h) in the 
catchment clusters. The sample size is denoted by n. The red cross on the box plots represents the mean value. Our clustering is 
somewhat similar to the earlier classification from 1972 (Protasjeva and Eipre 1972), where the Estonian catchments were divided into 
three major clusters based on the natural annual regulation of runoff. Further distinctions were made within these clusters, e.g., the 
catchments of Pandivere Upland were delineated, similar to our work.  
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Similarly, FDC <Q10 and regulation time also showed 
negative correlations with all four CCF coefficient metrics 
(Table S3). These negative correlations suggest that catch ­
ments with damped high­flow responses have less pro ­
nounced overall hydrological responses.  

The general relationship between CCF coefficient metrics 
and lags is inverse, indicating that as the strength of the as ­
sociation between the recharge and streamflow signals in ­
creases, the CCF lag decreases. ACF lags also tend to vary 
more as the CCF lag time decreases (Table S3). The water­ 
yearly CCF wy r shows a significant negative correlation with 
spring floods, CCF spring r (ρ = –0.84, p < 0.05), followed 
by autumn floods, CCF autumn r (ρ = –0.68, p < 0.05). This 
supports the claim that spring floods, generally caused by 
snowmelt, are the most important hydrological events of the 
water year, as also showed by Koit (2022) and Koit et al. 
(2022). 
 
 Flow duration curve 
Catchments with greater memory and longer regulation times 
exhibited flatter slopes in high­flow conditions (FDC <Q10) 
and relatively steeper slopes in median­ to low­flow con ­
ditions (FDC Q50–Q100). Such connections were evident in 
the upland catchments (clusters 2 and 3), suggesting a pro ­
longed release of water from relatively homogeneous reser ­
voirs, such as productive aquifer systems, which sustain 

groundwater release over prolonged periods. In catchments 
with less permeable surfaces and limited storage capacity, 
steep FDC <Q10 slopes were observed, indicating rapid 
changes and greater variability in streamflow. However, in 
these catchments, the FDC “flattens out” in low­flow con ­
ditions (FDC Q50–Q100) because, after rapid runoff during 
high flows, the yield drops significantly, as the catchments 
lack sufficient storage to sustain baseflow. Seasonal CCF 
metrics (CCF spring r: ρ = –0.71, p < 0.05; CCF autumn r: 
ρ = –0.78, p < 0.05) showed strong negative correlations with 
FDC <Q10 and positive correlations with FDC Q50–Q100. 
CCF time lags, such as CCF wy k (water­yearly lag), showed 
a similar pattern, with a positive correlation with FDC <Q10 
and varied correlations with FDC Q50–Q100. This suggests 
that catchments with longer CCF lags tend to have less vari ­
ability in streamflow. 
 
3.3. Differences between the clusters 
The catchments in the plateau (1) cluster exhibited pro ­
nounced memory effects in hydrological processes, with a 
streamflow ACF lag averaging around 41.3 days (Fig. 4a). 
The mean BFI value (0.65) suggests a relatively balanced 
contribution from both surface runoff and baseflow, while the 
contribution of the latter is still greater and more stable than 
in lowland (4) catchments (Fig. 4b). This consistency is re ­
flected in the CCF coefficients, where the plateau (1) cluster  
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Fig. 4.  The variation of ACF wy k (a), BFI (b), CCF mean k (c), CCF mean r (d), CCF wy k (e), CCF wy r (f), CCF autumn k (g),  
CCF autumn r (h), CCF spring k (i), CCF spring r (j), FDC <Q10 (k), and FDC Q50–Q100 (l) in the catchment clusters. The sample size is 
denoted by n. The red cross on the box plots represents the mean value. 
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shows moderate correlation strengths (Fig. 4d, f, h, j), par ­
ticularly in autumn and spring, and moderate lag times (k) 
across all seasons (Fig. 4c, e, g, i). This is because the 
catchments in this cluster are located at intermediate ele ­
vations, featuring a balanced land cover: a mix of perched 
peatland basins and thin­surfaced karstified carbonate hil l ­
ocks (Fig. 3e, g). The mean CCF lag is 2.7 days, second only 
to the lowland (4) cluster (Fig. 4c, d), which shows the 
relatively high hydrological sensitivity of the plateau catch ­
ments. Additionally, the plateau (1) cluster ranks second only 
to the lowland (4) cluster, based on the number of drought 
days (Fig. 5c). 

The sandstone upland (2) catchments featured a relatively 
short mean memory effect, with an average streamflow ACF 
lag of 34.4 days (Fig. 4a). However, they featured a high 
BFI (Fig. 4b) of around 0.73, and high k max values (Fig. 6a), 
implying significant groundwater contribu tions from relatively 
permeable bedrock formations with great storage capacity. 
The latter somewhat contradict the unexpectedly low ACF 
lag values of the sandstone upland (2) cluster and the general 
theory behind the streamflow memory effect. This anomaly 
results from the peculiar hydrological regime of the sandstone 
upland (2) catchments (Fig. 6). During the spring floods, the 
biggest peaks of the water year, the response in these 
catchments can be as rapid as in the lowland (4) catchments. 
This is reflected by similar means in FDC <Q10 values 
(Fig. 4k) and the shortest spring CCF lags (Fig. 4i), which 

in the uplands is most likely caused by the greater gradients 
(Fig. 3b) and steeper slopes, as indicated by the great devi ­
ation in catchment elevation (Fig. 3a). In some cases, the 
relative spring quickflow flashiness is further amplified by 
the poor permeability of the thick Quaternary cover layer.  

However, the catchments in the sandstone upland (2) 
exhibit by far the highest and most stable Q MAM7 values 
and the highest Q MAM7/Q mean ratio values (Figs 5d and 
6b), even surpassing the water­rich carbonate upland (3) 
catch ments. This reflects the significant buffering effect of 
the sandstone aquifers, resulting in a stable and sustained 
baseflow drainage regime (Fig. 5d). At the same time, the 
sandstone upland (2) catchments are relatively ineffective 
(low ECI) and least affected by evapotranspiration during the 
summer seasons (Fig. 5b, e, f). 

The carbonate upland (3) cluster stands out with the 
longest streamflow ACF lags, averaging around 48.5 days 
(Fig. 4a). The highest BFI value (Fig. 4b) among the clusters 
suggests catchments with significant groundwater storage 
capacity. Longer regulation times (see Table S2) signify an 
extended period for the system to reach equilibrium after a 
recharge event. This emphasizes the buffered dynamics of the 
catchments in the cluster. This cluster also shows the longest 
CCF lags (Fig. 4c, e, g, i) and the lowest CCF coefficients 
(Fig. 4d, f, h, j) across all seasons, signifying a delayed system 
response. These catchments receive an important ground ­
water contribution from high­ to very high­yielding carbonate 
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Fig. 5.  The variation of ƐP–Q (a), ƐP–Q (b), drought days (c), Q MAM7/Q mean (d), runoff/P ratio (e), and ECI (f) in the catchment clusters. 
The sample size is denoted by n. The red cross on the box plots represents the mean value. 
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aquifers, covered by a relatively thin layer of Quaternary 
sediments (Fig. 3h, d). Infiltration is diffuse in these relatively 
flat but elevated and well­drained watersheds, which in turn 
contributes to the modest CCF response but also ensures en ­
hanced groundwater recharge capacity in the catch ments, 
reaching over 0.44 mm/d, as noted by Jaagus et al. (1998). 
Due to the stable baseflow regime, there were prac ti cally no 
drought days in either of the upland clusters (Fig. 5c).  

Catchments in the lowland (4) cluster exhibit short stream ­
 flow ACF lags, averaging 34.5 days (Fig. 4a). The domi nance 
of surface runoff is indicated by the lowest BFI, around 0.55 
(Fig. 4b). The importance of surface runoff and the lower 
intensity of groundwater recharge in the catchments of the 
lowland (4) cluster, e.g., in Vihterpalu and Laadi, was also 
shown by Jaagus et al. (1998) in their model ing results. The 
lowland (4) cluster also showed the highest median CCF 
coefficients (r) across all seasons (Fig. 4d, f, h, j), demon ­
strating a strong correlation between the streamflow and 
recharge signal. The lowest average CCF lag (except in 
spring, when sandstone upland (2) catchments can be more 
responsive) suggests rapid catchment responses (Fig. 4c, e, 
g, i) due to the more impermeable geology and/or land cover 
domi nated by peatland basins. The surface runoff dominance 
is also indicated by the high efficiency of the catchments 
in the lowland (4) cluster (Fig. 5e, f) and the significantly 
strong correlation between the mean CCF coefficient and 
precipi tation elasticity to runoff (ρ = 0.88, p < 0.05; Table S4). 
The hydrological sensitivity of the low land (4) cluster is 
summed up by the highest mean number of drought days 
(Fig. 5c). 
 
3.4. Determining hydroclimatic drivers of focus  
        parameter variability 
To evaluate the variability of the focus parameters between 
water years and their dependence on selected hydroclimatic 
parameters listed in Table 2, the LightGBM model was used. 

The standardized (rescaled 0–1) SHAP values are shown in 
Table 3, and the observed versus predicted values of the focus 
parameters are shown in Fig. 7.  

General hydroclimatic parameters, such as the sum of 
precipitation, evaporation, and associated hydrological ratios, 
showed low impacts on predictions for ACF lag and CCF 
metrics (Table 3). This suggests that while these parameters 
are the main drivers of hydrological processes, their direct 
short­term impact on streamflow characteristics may be less 
pronounced. The model placed considerable emphasis on air 
temperature and water temperature, as the latter is directly 
dependent on the former (ρ = 0.45, p < 0.05; Table S5), for 
capturing hydrological processes related to the focus para ­
meters (Tables 3 and S5). Air temperature, particularly its 
mini mum, maximum, and variation values, emerged as a 
pivotal factor across multiple focus parameters (Table 3).  

Significant deviations in air temperature from mean 
values, trending towards warmer conditions, are associated 
with ACF lags, which is also reflected, e.g. in the overall 
importance of water temperature variation (Water temp CV 
in Table 3). Mean air temperature is closely related to the 
various aspects of snowpack: higher mean air tem pera ­
tures correspond to decreases in SDE and SWE (ρ = –0.67; 
ρ = –0.71, p < 0.05 for both; Table S5). Higher air temperature 
(min, max, mean, and deviation) was positively related to 
longer ACF lags (ρ = 0.42, p < 0.05; Table S5), as clearly seen 
in the 2020 water year (Fig. 8). However, a water year with 
significant snowpack and abrupt spring snowmelt, such as 
2013, produced shorter ACF lags (Fig. 8). The importance of 
snow­related parameters in Table 3, such as the mean SDE, 
SWE, and the previous water year’s SWE, highlights the 
great influence of snowpack dynamics, compared to annual 
precipitation amounts, on predicting the streamflow char ­
acteristics quantified by the ACF, CCF, FDC, and BFI metrics. 
A weak but significant negative correlation (ρ = –0.11, 
p < 0.05; Table S5) hints that higher precipitation amounts 
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Fig. 6. The distribution and variation of k max and Q MAM7/Q mean values vs. ACF lags (days) in the four catchment clusters. 
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may be associated with shorter ACF lags, possibly due to 
increased runoff and more frequent and quicker hydrological 
responses. At the same time, precipitation conditions of 
the previous water year, which affect antecedent moisture 
conditions, appear to be even more important than current 
precipitation amounts (ρ = –0.15; ρ = –0.29, p < 0.05 for both; 
Table S5). 

The results showed that the CCF metrics of the water year 
(CCF wy) are most closely related to the CCF properties 
(strength and lag) of the spring half­year (CCF spring), fol ­
lowed by autumn floods (CCF autumn) (Tables 3 and S5). 
This suggest that significant snowmelt events, primarily in 
spring but sometimes also in the autumn season (early 
snowmelt), are decisive in shaping the hydrological regime. 

In the example of the wet but snowless 2020 water year 
(Fig. 8), the scattered CCF and ACF metrics indicate greater 
variability in hydrological responses. This is especially evi ­
dent in the CCF spring responses (Fig. 8), reflecting the 
broader dispersion of responses due to the lack of a strong 
and uniform snowmelt signal. As winter precipitation is 
projected to increase (Coppola et al. 2021; Jaagus and Mändla 
2014; Ruosteenoja and Jylhä 2021), and rising air tempera ­
tures (2.5–3.8 °C in winter and 2.0–3.4 °C in summer) are 
expected to reduce snowpack while increasing water surplus 
in colder seasons (Barnett et al. 2005; Okkonen et al. 2011), 
hydrological variability is expected to increase in the coming 
decades. 

Preceding moisture conditions (previous water year SWE 
and precipitation) can also have a significant effect (Table 3). 
Snowpack and snowmelt dynamics can affect a wide variety 
of parameters in the following water year. Koit et al. (2022) 
showed that autumn CCFs best highlighted and characterized 
the sensitivity and responsiveness of aquifers interacting with 
surface catchments, as supported by the relatively higher CCF 
autumn r values (Fig. 8). This is because in autumn, aquifers 
and associated catchments recover from the summer low 
flow/drought period without the masking effect of snowmelt 
(see 2013 and 2018 vs. 2020 in Fig. 8). While seasonal CCFs 
provide valuable insights into hydroclimatic variability, the 
mean CCFs (CCF mean), calculated for the entire period of 
2012–2022, were less sensitive to calculation anomalies, 
capturing the overall hydrological sensitivity of a catchment 
with sufficient detail. This makes them more suitable for 
catchment classification. 

As seen from the SHAP values for FDC <Q10 (Table 3), 
high­flow conditions are predominantly influenced by snow ­
pack conditions and air temperature. The more negative FDC 
<Q10 values during the 2013 water year (Fig. 8), which 
correspond to steeper limbs of flood peaks, can be attributed 
to abrupt spring snowmelt and ice­damming (Estonian 
Environment Agency 2014). The sandstone upland (2) catch ­
ments stand out in particular, exhibiting the most negative 
values. 

During the snow­rich 2013 water year, the mean BFI 
value approached 0.5, indicating a greater contribution of 
surface runoff (Fig. 8). The decrease in BFI values was par ­
ticularly significant in the lowland (4) cluster, which testifies 
to the greater role of surface runoff during snowy years (in 
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Fig. 8.  Mean hydrometeorological indicators and kernel density estimation plots of the focus parameters (ACF wy k, BFI, CCF wy k,  
CCF wy r, CCF autumn k, CCF autumn r, CCF spring k, CCF spring r, FDC <Q10, and FDC Q50–Q100) of the plateau (1), sandstone upland (2), 
carbonate upland (3), and lowland (4) clusters in the 2013, 2018, and 2020 water years. 

 FDC Q50–Q100

–



the case of abrupt snowmelt). Conversely, in the dry 2018 
water year, baseflow became more prominent (Fig. 8), as seen 
from elevated BFI values. Low to mid­flow con ditions (FDC 
Q50–Q100 in Table 3) were significantly in fluenced by the 
hydro logical balance and extreme con ditions, such as drought. 
In dry years (2013 and 2018), FDC Q50–Q100 slopes were 
more likely to be flat (fewer negative values), especially in 
the lowland (4) cluster (Fig. 8). Flatter FDC Q50–Q100 
slopes occur during longer periods when water bodies rely 
mainly on baseflow, or even dry up completely. This was also 
reflected in BFI values (Table 3), which were influenced by 
extreme conditions (drought days) and water temperature 
variability. 

The hydrological sensitivity of Estonian catchments is 
most clearly manifested in the influence exerted by winter­
spring snow dynamics and droughts, as demonstrated by the 
influence of air temperature and precipitation deviations, 
along with the number of drought days, on focus parameters. 
This aligns with previous studies in Estonia, which have 
analyzed the water balance of Estonian catchments and long­
term interdependence between atmospheric conditions and 
river runoff (Roosaare et al. 1998; Jaagus et al. 2017; Kotta 
et al. 2018). These studies found that historical changes in 
Estonian river runoff generally coincided with variations in 
air temperature and snow cover duration, caused by changes 
in atmospheric circulation during the winter season. In 
addition, it has been shown that long­term (multi­decadal) 
regime shifts in river runoff corresponded to the alternation 
of wet and dry periods (Jaagus et al. 2017). As snow cover 
duration in the region is projected to decrease and air tem ­
peratures increase, climate change will thus lead to significant 
alterations in the hydrological regime in the region, including 
a decrease in spring floods and higher discharge in autumn 
and winter due to winter rains (Meier et al. 2022). However, 
as shown by this study, the direct effects of temperature and 
precipitation changes on specific catchment runoff remain 
unclear, as they will act in combination and depend strongly 
on the local factors (Stahl et al. 2010). 

4. Conclusions 
We assessed the intricate interplay between hydroclimatic 
factors and hydrological sensitivity across different catchment 
types in Estonia. By employing advanced statistical and ma ­
chine learning techniques, such as LightGBM modeling sup ­
ported by SHAP value interpretations, the study revealed the 
nuanced influences of air temperature, snowpack dynamics, 
and preceding hydrological conditions on stream flow char ­
acteristics. 

Catchments with significant groundwater contributions 
and effective storage, particularly in the upland clusters, 
showed slightly different behavior in terms of memory effects 
and hydrological responses depending on geological con ­
ditions, while other parameters rather supported their high 
buffering capacity and drought resistance. Conversely, low ­
land cluster catchments, where soils with poor infiltration 
capacity, peatlands, and artificial drainage are widespread, 
displayed higher sensitivity and quicker responses to hydro ­
climatic variability. 

The study also underscores the importance of air tem ­
perature and snowpack conditions in modulating streamflow, 
particularly in shaping high­flow conditions and baseflow 
contributions. It suggests that air temperature, through its 
influence on water temperature and snowpack dynamics, has 
a strong bearing on streamflow responses. 

Additionally, the results demonstrate that the short­ to 
medium­scale hydrological sensitivity of catchments is not 
solely dictated by immediate precipitation and evaporation 
dynamics but is also significantly influenced by antecedent 
moisture conditions from the previous water year. This under ­
standing has profound implications for water resource man ­
age ment, especially in the face of climate variability and 
change. 

This study contributes to the broader understanding of 
hydrological processes by revealing the varying degrees of 
catchment sensitivity to hydroclimatic changes, serving as a 
valuable resource for future research and policy­making in 
hydrological and environmental planning. The nuanced char ­
acterizations of catchment responses derived from this re ­
search can inform targeted strategies to mitigate the impacts 
of extreme hydrological events, thereby enhancing the re ­
silience of water resource systems against the backdrop of a 
changing climate. These findings will also help in designing 
measures to preserve and achieve the good status of ground ­
water and surface water bodies, as set out in the EU Water 
Framework Directive (European Commission 2000), under 
evolving climatic conditions. 
Some detailed considerations: 
● ACF lag is a robust and informative parameter that in ­

tegrates hydroclimatic, hydrologic, and hydrogeologic 
influences, while being relatively easy to calculate. How ­
ever, other supporting parameters are needed to fully 
understand the hydrological behavior of a watershed. 

● Although the length of the ACF lag can be generally 
interpreted as a measure of hydrological inertia, there may 
be deviations from the general understanding in certain 
cases, as was evident in the sandstone upland (2) catch ­
ments. In these cases, other parameters must also be used 
to support the interpretation of the memory effect and to 
highlight the characteristics of the hydrograph, which may 
remain hidden when relying solely on ACF data. 

● Contrary to intuition, the longest ACF lags were observed 
during dry and droughty water years, not necessarily in 
water years with lots of precipitation, storm events, or 
snowmelt that typically generate the most groundwater 
recharge. The long lags would be caused by the uninter ­
rupted length of streamflow recession during extended 
low flow periods. In contrast, wet years with repeated 
flood events alternate with shorter recession periods, 
producing shorter overall ACF lags. 

● CCF is excellent in showing streamflow response/ 
sensitivity to recharge events; however, their automatic 
calculation requires precaution. Calculation results be ­
come more uncertain as the observation period shortens. 
The timing of individual flood events and their position ­
ing in the calculation “window” has a decisive impact on 
the calculation of seasonal CCF. 
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● The FDC segments, especially the extremes such as FDC 
<Q10 and the median–high flows (FDC Q50–Q100), 
provide a stark contrast in catchment responses to high­ 
and low­flow conditions. These parameters indicate the 
variability and stability of streamflow, with high­flow 
conditions influenced by factors such as snowmelt and air 
temperature, while low­ to mid­flow conditions reflect the 
hydrological balance and the catchment’s ability to sustain 
baseflow during dry periods. 

● It is constructive to note that the sensitivity of these 
parameters to hydroclimatic factors can significantly af ­
fect water resource management strategies. For instance, 
a catchment with a high BFI and prolonged ACF lags 
suggests a system with significant groundwater influence, 
likely to be resilient to short­term climatic variations but 
potentially vulnerable to long­term climate shifts that 
could alter groundwater recharge patterns. In contrast, 
catchments with short CCF lags and steep FDC slopes 
during high flows may require careful monitoring for 
flood risks, while those with flatter FDC curves during 
low flows will need strategies to combat drought impacts. 
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Kliima muutlikkusest tingitud hüdroloogiline tundlikkus Eesti valgaladel: 
parasvöötme põhjapoolne perspektiiv 

Oliver Koit, Joonas Pärn, Marlen Hunt, Siim Tarros, Elve Lode ja Pamela Abreldaal 

Globaalne kliimamuutus mõjutab märkimisväärselt piirkondlikke hüdroloogilisi süsteeme, eriti põhjapoolsetes 
parasvöötme riikides nagu Eesti. Uurimus käsitleb Eesti valgalade hüdroloogilist tundlikkust kliimamuutuste 
suhtes, keskendudes pinna- ja põhjavee koosmõju ilmingutele. Töös kasutatakse 42 jõe hüdromeetriajaama 
äravoolu ja valgala andmeid ning rakendatakse erinevaid hüdroloogilis-statistilisi meetodeid. Analüüs hõlmab 
2012.–2022. veeaasta hüdroloogilisi, ruumilisi ja veekvaliteedi andmeid. Suuremat tähelepanu pööratakse ära-
voolu autokorrelatsioonifunktsiooni (ACF), ristkorrelatsioonifunktsiooni (CCF), baasvooluindeksi (BFI) ja voolu 
kestuse kõvera (FDC) tulemustele ning nende seotusele teiste valgala parameetritega. Valgalade hüdroloogilise 
iseloomu järgi saab need jagada nelja klastrisse: platoo, liivakivi kõrgustik, karbonaatkivimi kõrgustik ja madalik. 
Töö tulemustest selgub, kuidas erinevad valgalade klastrites äravoolu tundlikkus toite-  sündmuste suhtes, 
baasvoolu dünaamika, autokorrelatsioonifunktsiooni kirjeldatav „mäluefekt“ ja näiteks ka põuapäevade arv. 
LightGBM gradienti suurendava masinõppe mudeli abil tuuakse esile õhutemperatuuri ja lumi katte suur mõju 
hüdroloogilisele tundlikkusele. Uurimus näitab Eesti valgalade erinevat hüdroloogilist tundlikkust hüdrokliimaa-
tiliste muutuste suhtes, rõhutades valgala spetsiifiliste omaduste arvestamise tähtsust veevarude majandamisel 
ja poliitika kujundamisel. Töö panustab laiemasse arusaama hüdroloogilistest prot sessidest ning annab väärtus -
likku teavet tulevasteks teadusuuringuteks ja keskkonnaplaneerimiseks kliima muutuse tingimustes. 

 


