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ABSTRACT

The escalating impacts of global climate change significantly affect regional hydrological
systems, particularly in northern areas such as Estonia. This study investigates the hydrological
sensitivity of Estonian catchments to climatic variability, focusing on the interplay between
surface water and groundwater. Using data from 42 river catchments, it employs various
statistical methods in hydrology, emphasizing the autocorrelation function, cross-correlation
function, baseflow index, and flow duration curve. The analysis spans the years 2012-2022,
integrating hydrological, spatial, and water quality parameters. The research identifies four
distinct hydrological behavior clusters: plateau, sandstone upland, carbonate upland, and
lowland. Key findings include diverse catchment sensitivities to groundwater recharge, the
role of baseflow in streamflow stabilization, the memory effect in catchment responses, and
insights from the flow duration curve on flow variability and extremes. The LightGBM model,
predicting focus parameters, highlights the critical influence of air temperature and snowpack
on streamflow characteristics. This study underscores the diverse hydrological sensitivities of
Estonian catchments to hydroclimatic changes, emphasizing the impor-tance of considering
catchment-specific characteristics in water resource management and policy-making. Con-
tributing to the broader understanding of hydrological processes, it provides valuable insights
for future research and environmental planning in the face of climate variability and change.

1. Introduction

Global climate change is anticipated to accelerate, with significant changes in pre-
cipitation patterns and large spatial heterogeneity in temperature increases projected
across different regions (IPCC 2022). Over the last century, changes in temperature
and precipitation patterns have disrupted regional hydrological systems, leading to
alterations in the intensity, frequency, and duration of peak and low flows, with
increasing occurrences of severe streamflow droughts (Teutschbein et al. 2022, 2015).
Climate change significantly affects northern hydrology, particularly the accumulation
and melt of seasonal snow cover, which is crucial for catchment runoff and ground-
water recharge (Rodhe 1998; Earman and Dettinger 2011; Jenicek et al. 2016).
Observed and projected changes include reduced snow depth and snow water
equivalent, altered snowmelt timing, and a shift from snowfall to rain in winter
(Berghuijs et al. 2014; Merio et al. 2019; Grogan et al. 2020; Ranasinghe et al. 2021).
These changes have already decreased peak stream flows and shifted them earlier in
the year in northern Europe, resulting in lower summer-autumn flows and increased
spring soil moisture deficits (Bloschl et al. 2019; Douville et al. 2021; Jaagus et al.
2017; Ruosteenoja et al. 2018; Viru and Jaagus 2020). Winter precipitation is
projected to increase by up to 10% by 2100, although summer changes remain
uncertain (increase <5%) (Coppola et al. 2021; Jaagus and Méndla 2014; Ruosteenoja
and Jylha 2021). Rising temperatures (2.5-3.8 °C in winter and 2.0-3.4 °C in
summer) are expected to increase evapotranspiration, reduce summer runoff and
recharge, and increase water surplus in colder seasons (Barnett et al. 2005; Okkonen
et al. 2011). Consequently, both short- and long-term changes in stream discharge
and groundwater storage are anticipated (Okkonen and Klgve 2011; Donnelly et al.
2017; Costantini et al. 2023).
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Groundwater processes, which tend to be slower and less
uniform than surface water events, lead to prolonged summer
recessions and decreased late-summer and autumn discharges
(Vorobevskii et al. 2022). Climate change is expected to sig-
nificantly alter groundwater levels, aquifer storage, and base-
flow, mainly due to changes in groundwater recharge timing
and intensity (Taylor et al. 2013; Smerdon 2017; Wu et al.
2020; Nygren et al. 2020). In northern Europe and North
America, studies have demonstrated groundwater systems
to be particularly sensitive to climate change. For instance,
groundwater streams in northwestern USA are more sensitive
to climate change than runoff-dominated streams (Jefferson
et al. 2008). In northern Finland, warmer climates are pre-
dicted to increase groundwater recharge and shift peak water
levels earlier, affecting groundwater—surface water inter-
actions (Okkonen and Kleve 2011). Research on the Baltic
States’ groundwater anticipates a general rise in levels with
minimal seasonal variation (Babre et al. 2023), while in
Estonia, a 2040% increase in groundwater recharge is pro-
jected under warmer climates (Vallner 1998).

There was a necessity to offer a general evaluation of the
hydrological sensitivity of Estonian surface water and as-
sociated groundwater bodies, including their interactions, in
the context of patchy and scarce dedicated monitoring data.
This challenge led to the development of the approach used
in this study, which draws partly on the findings of Koit
(2022) and Koit et al. (2022) regarding the auto- and cross-
correlation functions of Estonian lowland rivers. The study’s
approach is based on the assumption that the characteristics
of the interplay between surface water and groundwater can
be identified by analyzing the catchment’s streamflow hydro-
graphs (Killian et al. 2019; Teutschbein et al. 2015). We set
out to examine how different gauged catchments in Estonia
responded to hydroclimatic variability on a water-yearly scale
during the period of 2012-2022 by quantifying various
aspects of streamflow, such as its memory (Schuler et al.
2022; Sutanto and van Lanen 2022), the proportion of ground-
water runoff (baseflow), and the sensitivity of streamflow to
groundwater recharge events.

The autocorrelation function (ACF) characterizes the
degree of linearity in a time series, indicating the extent to
which a data point is affected by previous data points, often
referred to as the memory effect (Bailly-Comte et al. 2008;
Mangin 1984; Schuler et al. 2022). The concept of memory
effect, as reflected through the ACF, is influenced by the
effective storage of particular surface water and the associated
groundwater catchment, with higher storage leading to greater
memory or inertia in discharge. Catchments featuring greater
memory can be considered less susceptible to meteorological
drought compared to those with lower memory. As ground-
water storage plays a crucial role in streamflow memory
(Cochand et al. 2019), the contribution of groundwater to
total streamflow should be estimated. The ratio of baseflow
to total streamflow, defined as the baseflow index (BFI),
represents the slow or delayed contribution to streamflow that
is influenced by catchment hydrogeology. Complementary to
the ACF, the BFI helps validate the presence of periodicity
or persistence observed in the autocorrelation function, pro-

viding additional evidence of groundwater dynamics influenc-
ing streamflow patterns.

Furthermore, the reaction and sensitivity of streamflow
dynamics to recharge events could be quantified to assess the
interconnection of surface water and groundwater in a catch-
ment. We applied the cross-correlation function (CCF) to
quantify the linear dependency of discharge on the recharge
signal. To overcome the bottlenecks associated with using
precipitation as an input to the CCF in a climate where some
precipitation falls as snow and is therefore tied up in the snow-
pack for some time, as pointed out by Koit et al. (2022) and
Pérn et al. (2024), we experimentally used a modeled ground-
water recharge signal as the input in this study. To support the
findings from the ACF, CCF, and BFI, we also used the flow
duration curve (FDC), another robust hydrological method,
for reflecting the variability within the streamflow regime.
FDCs enable the delineation of flow permanence and the
identification of hydrological extremes. In the context of cli-
mate change, the FDC is instrumental in revealing the alter-
ations in flow regimes and aiding in the understanding of
how catchment characteristics modulate the response to cli-
matic variability (Vogel and Fennessey 1994). To evaluate the
performance of the focus parameters — ACF, CCF, BFI, and
FDC —, we applied a variety of other hydrological and spatial
analysis-derived statistics.

2. Materials and methods
2.1. Studied catchments

In this study, the hydrological sensitivity of 42 gauged river
catchments in Estonia, ranging from 52 to 1813 km? in size,
was assessed (Fig. 1; Table S1). Estonia is located in the bor-
eal biogeographical region between high latitudes 57°30° N
and 59°49’ N, and lies in the transition zone of the Baltic Sea
maritime and continental climate regions (i.e., Cfb and Dfb
Koppen—Geiger climate regions; Kottek et al. 2006; Beck et
al. 2018). Based on the ERA5-Land dataset (Mufioz Sabater
2019), the mean annual precipitation during 2012-2022 was
747 mm, with about 18% falling as snow. On average, around
537 mm of precipitation was removed by total evaporation,
leaving 210 mm for the generation of surface water and
groundwater runoff. The most important hydrological events
of the water year are the spring snowmelt floods (Jarvet
1998). Furthermore, seasonal hydrological sensitivity is in-
fluenced by snow deposition in the winter and evapotran-
spiration during the summer season (Koit et al. 2022).
Estonia’s geological and hydrogeological context is de-
fined by its location in the NW part of the East European
Platform. In Estonia, the low-lying monoclinal platform (mean
elevation 50 m asl; max 317 m asl in SE uplands) consists of
Neoproterozoic and Paleozoic sedimentary rocks, which host
multiple aquifer systems belonging to the Baltic Artesian
Basin. Silurian and Ordovician carbonate rocks predomi-
nantly outcrop on the N-NW half and Devonian sandstones
in the S—SE half of the territory. The sedimentary rocks are
overlain by Quaternary deposits, formed mainly during the
Late Weichselian glaciation. The territory of Estonia was degla-
ciated between 15 to 13 ka BP (Kalm 2006). The Quaternary
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Fig.1. Selected catchments and hydrological gauging stations analyzed in this study.

cover, 5-10 m thick on average (up to 100-200 m thick in the
SE uplands), consists of different types of sediments by gen-
esis, among which the most widespread are glacial tills, gla-
ciolacustrine sands, silts and clays, and glaciofluvial sands and
gravels (Raukas and Kajak 1997). Throughout the Holocene,
cool and humid climate has been favorable to the devel-
opment of vast peatlands, which cover up to 20% of the ter-
ritory, usually overlying Quaternary sediments with poor per-
meability.

2.2.Data

Data on streamflow, land cover, geology, hydrogeology, water
quality, and hydroclimate for 42 Estonian catchments (Table S1)
were collected from various public databases. The full data-
set contained 97 parameters (Tables S2 and S6), from which
further selections were made according to the purpose of the
specific analysis. Daily streamflow and water temperature
time series for the 20122022 water years were provided by
the Estonian Environment Agency. Water quality data were
acquired from the Environmental Monitoring Information
System database. Spatial data of catchment topography, geo-
logy, hydrogeology, and land use/cover were extracted from
various maps made publicly available at Geoportal by the
Estonian Land Board. Monthly climatic data (2 m air tem-
perature, total precipitation (P), total evaporation (E), snow
depth (SDE), and snow water equivalent (SWE)) from the
ERAS5-Land dataset by Muifioz Sabater (2019) were also

used. The time-variable data were averaged by water years
(1 October — 30 September). All analyzed parameters and
their abbreviations are listed and defined in Table S6.

2.3. Methods

2.3.1. Time series analysis

The analysis of daily streamflow time series recorded at the
42 gauging stations forms the basis of the study. In the fol-
lowing, we describe the methodology for calculating the focus
parameters and other relevant metrics. Detailed descriptions
of all parameters discussed in this work are provided in the
supplementary content. Time series analysis was performed
using Microsoft Excel software (Microsoft Corporation,
USA), unless noted otherwise.

To characterize streamflow memory, ACF lags (k) were
calculated using daily streamflow data. The ACF calculations
were carried out using R, v. 4.2.3 (R Core Team, Austria), and
RStudio, v. 2023.03.0+386 (Posit Team, USA), applying a
threshold value of 7, < 0.2, widely used in earlier studies (Koit
et al. 2022; Mangin 1984; Schuler et al. 2022). The formula
for ACF according to Larocque et al. (1998) is as follows:

_ Gk

= e

Tk

with

n—-k
1
Ce=r ) (o =Bt — ). )

t=1
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where r, is the autocorrelation at lag £, k& is the time delay
from 0 to maximum lag time, C, is the covariance at lag £,
C, is the variance at lag k, n is the length of the studied time
series, x, is the series value at time ¢, and X is the mean value
of the series.

The BFI was calculated using the approach of Ladson et
al. (2013), applying the Lyne and Hollick (1979) recursive
digital filter:

4 © = {aqfa -+ @[q@o— q(i = D] for g, () > 0, (3)
otherwise
qp (D) = q(@) — q (D), )

where ¢ f.(i) is the quickflow response at the i-th time step, ¢(i)
is the total streamflow at the i-th time step, ¢,(i) is the base-
flow at the i-th time step, and a (0.91) is the filter parameter
that alters the shape of separation. The filter is applied mul-
tiple times on the dataset. In the case of daily data, three
passes (forward, backward, and forward) are commonly used.
The BFI is defined as the ratio of baseflow volume to total
streamflow volume over a specified period (water year).

The sensitivity of streamflow to modeled groundwater
recharge was analyzed by calculating the CCF. The CCF
quantifies the linear dependency between two time series, x,
and y, (Larocque et al. 1998). The interpretation of the CCF
allows to assess the transfer of pressure impulse of ground-
water recharge to the surface water catchment (Bailly-Comte
et al. 2008; Mayaud et al. 2014; Worthington 2019). Accord-
ing to Larocque et al. (1998), the formula for cross-correlation
is as follows:

_ Cy(l)
Ty (k) = on0 (5)

with

n—-k
Co® =2 ) (xe=B)xri=3) O

t=1
where ny(k) is the cross-correlogram, and ¢, and o, are the
standard deviations of the time series x, and y,, respectively.

The groundwater recharge estimates were modeled using
the Precipitation-Runoff Modeling System (PRMS-IV), devel-
oped by Markstrom et al. (2015), as implemented by Hunt
(2021) and Parn et al. (2024). The PRMS was constructed for
the Selja River catchment located in northern Estonia (Varangu
gauging station in Fig. 1), and the modeled recharge estimates
were used for all the assessed river catchments. A detailed
description of the model’s structure, parameters, and cali-
bration results are described in Hunt (2021).

CCF correlation coefficients (r) and lag times (k) between
the modeled groundwater recharge and streamflow were
calculated for four different time periods: the entire dataset
period (2012-2022; CCF mean r/k), each water year (CCF
wy r/k), autumn floods (CCF autumn r/k), and spring floods
(CCF spring r/k). The CCF calculations were performed using
Python 3.9.13 (Rossum and Drake 2009) and the following
libraries: Pandas (McKinney 2010), NumPy (Harris et al.
2020), scikit-learn (Pedregosa et al. 2011), Matplotlib (Hunter
2007), and SciPy (Virtanen et al. 2020).

The KarstID R Shiny application, developed by Cinkus
et al. (2023), was used to carry out further discharge time
series analyses on the whole period of 20122022 to calculate
various parameters (regulation time, £ max, o mean, IR, and
SVC) for characterizing the hydrological functioning of
the studied catchments. The regulation time, as defined by
Larocque et al. (1998), was obtained from the spectral density
function and quantifies the duration of the input signal’s
influence, providing insight into the impulse response length
within the hydrological system. The indicator £ max was ex-
tracted from the analyzed recession curves and characterizes
the capacity of dynamic storage in the catchment. The re-
cession coefficient o mean characterizes the drainage of the
catchment storage. The indicator IR allows to estimate a
system’s capacity to filter and attenuate the precipitation
signal. The spring variability coefficient (SVC) is the ratio
between Q90 and Q10 (Q10/Q90) that serves as another
indicator of flow variability.

We calculated the seven-day mean annual minimum
discharge (Q MAMY7) as a more robust low-flow statistic in
comparison to the one-day minimum. We used it in com-
bination with the mean discharge (Q mean) to calculate a ratio
(Q MAM7/Q mean), serving as an indicator of low-flow
sensitivity, similar to Stoelzle et al. (2020).

The definition of the number of drought days by Parn and
Mander (2012) was used as the count of days during a water
year when the flow rate falls below 10% of the average flow
rate during the summer half-year (April-September). The
analysis was carried out in Python 3.9.13 (Rossum and Drake
2009), using the Pandas library (McKinney 2010).

To evaluate the sensitivity of streamflow to changes in
precipitation and total evaporation, the median precipitation
(8P7Q) and total evaporation (eEfQ) elasticity of runoff were
calculated after Sankarasubramanian et al. (2001). The equa-
tions for the precipitation elasticity of runoff (7) and total
evaporation elasticity of runoff (8) are as follows:

_ (d4Q/Q _dQP

ep-o(P, Q) = (dP/P T dp Q)’ @
_ (dQ/Q _ dQE

er-q(E, Q) = (dE/E T dE Q)’ ®

where €p o is the precipitation elasticity of runoff (unitless),
QO (mm) is runoff, P (mm) is precipitation, and £ (mm) is
evaporation. In the case of the latter, the total evaporation
values from the ERA5-Land dataset were used. Water-yearly
median elasticity values were calculated using monthly
precipitation, evaporation, and streamflow amounts.

To assess the efficiency of the studied catchments, the
effective catchment index (ECI) was calculated as described
by Liu et al. (2020). The ECI is defined as follows:

Ect =1log (%), ©)

where Q is the long-term mean discharge, P is the sum of
precipitation, and AET is the actual evapotranspiration. In the
case of the latter, the total evaporation values from the ERAS-
Land dataset were used. Positive and negative ECI values
indicate a streamflow excess or deficit, respectively, in rela-



tion to the climatic input. The average net quantity of ground-
water imports and exports in the catchment is shown by the
water balance deviation.

To further characterize the dominant trends in the stream-
flow regime of the studied catchments, we calculated the
linear slopes of the <Q10 (FDC <Q10) and Q50-Q100 (FDC
Q50-Q100) segments of the FDC, using standardized daily
discharge time series of 2012-2022. The FDC analysis was
carried out in Python 3.9.13 (Rossum and Drake 2009), using
the Pandas (McKinney 2010) and NumPy (Harris et al. 2020)
libraries.

2.3.2. Catchment characteristics

All analyses with spatial data were performed using ArcGIS
Pro 3.1.0 software (ESRI 2023). The mean and standard
deviation (SD) of catchment elevation, and the stream gra-
dient were extracted from the 25-meter digital surface
elevation model of Estonia provided by the Estonian Land
Board. The percentage of land cover in the catchments was
extracted from the Estonian Basic Map 1:10000 (Estonian
Land Board).

The percentage coverage of the dominant Quaternary
sedimentary cover types (alvar, glaciofluvial, glaciolacus-
trine, peat, glacial, marine) was extracted from the 1:400000
Geological Map of Estonia (Estonian Land Board). Average
Quaternary cover thickness values for all the catchments were
obtained from the Quaternary cover thickness layer of the
hydrogeological model of the Baltic Artesian Basin by
Virbulis et al. (2013).

The aquifer specific yield score was calculated based on
the specific yield values reported in the 1:400000 hydrogeo-
logical map of Estonia (Estonian Land Board). First, the areal
coverage percentage of each specific yield zone in the catch-
ment was calculated. Each specific yield zone was then as-
signed a weight and multiplied by its percentage coverage in
a particular catchment (the weights and yield ranges are
shown in Table S7). The resulting weight fractions were sum-
med up as a unitless parameter. A higher value indicates better
transmissivity of the catchment’s aquifers, and vice versa.
The groundwater protection score was calculated in the
same way, based on the 1:400000 hydrogeological map of
Estonia (Estonian Land Board). A higher value indicates a
higher degree of protection of catchment’s aquifers and vice
versa.

By subtracting the groundwater head elevation, obtained
from the 1:400000 hydrogeological map of Estonia (Estonian
Land Board), from the surface elevation of the 25-meter
digital surface elevation model of Estonia (Estonian Land
Board), the mean and SD depth to the groundwater level of
the first bedrock aquifer from the ground surface (GWL depth
mean/SD) was calculated.

2.3.3. Multivariate analysis

The multivariate relationships of the mean values (2012-2022
water year mean) of 70 hydrological, spatial, and water
quality parameters (listed in Table 1) in the 42 catchments
were evaluated through factor analysis (n = 70 x 42). For
further analysis, the catchments were clustered using agglom-
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Table 1. Factor pattern of the 70 parameters after Varimax rotation
(D1 and D2). Variables with the highest squared cosine values
corresponding to a particular factor are highlighted in bold

Factors D1 D2
Variability, % 26.379 20.993
Cumulative, % 26.379 47.372
Stream gradient 0.034 -0.433
) Catchment elevation mean —0.901 —0.068
g ; Catchment elevation SD —0.695 -0.383
'c% é Peatland 0.373 0.090
E\ § Arable land -0.420 0.457
g g Forest 0350 | -0.385
2 = | Drainage 0577 | 0371
= Water use -0.272 0.280
Population density —0.346 0.288
Total runoff 0.574 0.437
BF runoff —0.078 0.677
ACF wy k —0.153 0.891
ACFk CV —0.128 —0.760
Regulation time -0.232 0.887
k max -0.813 0.130
o mean 0.715 —0.378
IR -0.009 —-0.215
QSD 0.096 —0.087
QCV 0.875 —0.238
SvC 0.884 0.011
CCF autumn r 0.479 —0.635
CCF autumn k —0.446 0.092
CCF wy r 0.185 —0.476
CCF wy k —0.600 0.386
Eﬁ CCF mean r 0.677 —0.309
% CCF mean k —0.374 0.052
= CCF spring r 0.054 —-0.757
CCEF spring k -0.215 0.723
FDC <Q10 —-0.270 0.774
FDC Q50-Q100 0.701 —0.400
BFI -0.892 0.323
BFICV 0.751 —-0.275
Q MAM7/Q mean —0.912 0.076
Qspc mean 0.592 0.462
ECI 0.570 0.335
Q min/Q mean —0.870 0.067
Runoff/P 0.592 0.422
14:20) —0.065 —0.334
Ee0 0.860 0.003
Drought days 0.849 —-0.090
DoY Q max —0.492 0.052

Continued on the next page
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Table 1. Continued

Factors D1 D2
Variability, % 26.379 20.993
Cumulative, % 26.379 47.372
CODMn mean 0.823 —0.162
Ntot mean 0.083 0.709
Ptot mean 0.045 —0.198
= SO4 mean 0.367 0.714
'S [ Clmean 0003 | 0281
g HCO3 mean —0.306 0.411
g SEC mean —0.063 0.578
SEC CV 0.464 0.146
Water temp mean 0.017 -0.279
Water temp CV 0.268 —-0.510
Dominant bedrock geology —0.623 -0.628
Carbonate very high specific —0.032 0.668
yield
Carbonate low specific yield 0.626 0.341
Carbonate medium specific 0.392 0.260
yield
Ed Carbonate high specific yield 0.319 0.640
qb°_>0 Sandstone high specific yield | —0.540 —0.487
33 Sandstone low specific yield —0.427 —0.648
E Sandstone high medium -0.429 -0.732
specific yield
Aquifer specific yield score —-0.059 0.500
GWL depth mean -0.671 —0.156
GWL depth SD —0.656 —0.507
Groundwater protection score | —0.284 -0.721
Quaternary cover thickness —0.440 —0.736
5 Alvar 0.165 0.561
& | Glaciofluvial ~0.586 | —0.031
? Glaciolacustrine 0.063 —0.576
§ Peat 0.547 0.287
& Glacial till —-0.513 0.122
Marine 0.608 0.119

erative hierarchical clustering (AHC) based on multivariate
similarities. The AHC employed Euclidean distance as the
measure of dissimilarity between data points. The agglomer-
ation technique of choice was Ward’s method, which priori-
tizes minimal increases in total within-cluster variance during
cluster merging. To pinpoint the optimal number of clusters,
we relied on the adapted Calinski and Harabasz index, which
assesses clustering quality based on the ratio of between-
cluster to within-cluster variance. Varimax rotation was ap-
plied to improve the interpretability by maximizing the vari-
ance of squared factors loadings by column. For a given
factor, high loadings become higher and low loadings be-
come lower. The analysis was carried out using the XLSTAT
Forecast 2023.1.3.1407 software (Lumivero 2023).

2.3.4. LightGBM modeling

To understand the influence of selected hydroclimatic factors
on our focus parameters (ACF wy k, BFI, CCF mean k, CCF
mean r, CCF wy k, CCF wy r, CCF autumn k, CCF autumn r,
CCF spring k, CCF spring r, FDC <Q10, and FDC Q50—
Q100), the LightGBM (light gradient-boosting machine) was
employed. LightGBM is a distributed, high-performance
gradient boosting framework based on decision tree algo-
rithms, designed specifically to be efficient and scalable (Ke
et al. 2017). Prior to modeling, the dataset was standardized
to have zero mean and unit variance. This ensures that all fea-
tures have equal scales, which can enhance the stability and
interpretability of the model.

The LightGBM model was configured with a specific set of
hyperparameters, including num_leaves =31, learning_rate =
0.05, and n_estimators = 1000. These were selected based on
preliminary testing. The model was trained using the squared
error (12) as the objective function. A random subset con-
taining 20% of the data was set aside for validation. The
performance of the model was assessed on this validation set
after training. Mean squared error (MSE) and R-squared (R?)
were computed to evaluate the model’s accuracy and pre-
dictive capability.

To interpret the influence of each hydroclimatic factor,
feature importance was assessed by evaluating the gain and
split count metrics. Furthermore, to provide a more detailed
breakdown of how each feature impacts each prediction,
SHAP (SHapley Additive exPlanations) values were com-
puted. SHAP values are grounded in game theory and offer
insights into how each feature contributes, either positively
or negatively, to the predictive outcome (Lundberg and Lee
2017).

The entire analysis was conducted in Python 3.9.13
(Rossum and Drake 2009), leveraging the capabilities of
LightGBM (Ke et al. 2017), scikit-learn (Pedregosa et al.
2011), and SHAP (Lundberg and Lee 2017) packages.

3. Results and discussion
3.1. General multivariate characterization of studied
catchments

Two Varimax-rotated factor components, D1 and D2 (ex-
plaining 26.4% and 21% variability, respectively), were ex-
tracted from a selection of 70 streamflow and catchment-
derived parameters listed in Table 1. Notably, factor D1 exhibits
strong loadings for parameters related to streamflow dynamics,
such as Q CV, Q MAM7/Q mean, SVC, CCF mean r, €p o
drought days, SEC CV, k max, BFI, a mean, etc. The catch-
ments positively correlating with factor D1 are at lower
elevations, flatter, and underlain by low- to medium-yielding
carbonate rock aquifers with shallow groundwater levels.
These corresponding catchments also have a higher propor-
tion of peatlands, forests, peat soils, and artificial drainage,
which likely contribute to higher mean values of chemical
oxygen demand (CODMn) due to enhanced leaching from
organic soils. Such catchments are characterized by the most
sensitive hydrology (high values for ¢ mean, CCF mean r,



Q CV, SVC, €p o drought days, SEC CV, FDC <Q10, etc.),
and modest storage capacity (low k max, BFI). The catch-
ments corresponding to D1 can be relatively efficient (high
ECI), and in this respect, the catchments of the West
Estonian Archipelago stand out in particular (they are more
likely to gain additional groundwater contribution from
neighboring surface catchments). The catchments with a
strong negative correlation to D1 are generally situated at
higher elevations, underlain by high-yielding sandstone
aquifers, and feature a higher probability of glaciofluvial
sediments and a larger proportion of BFI.

The factor D2 exhibits significant positive representations
from variables such as ACF wy k, regulation time, FDC
<Q10, CCF spring k, and baseflow (BF) runoff, and the
occurrence of high-yielding carbonate rock and sandstone
aquifers, which is indicative of greater regulation, storage
capacity, and retention of water in the catchment. These char-
acteristics contribute to greater streamflow memory. Due to
the presence of more fertile soils (e.g., Luvisols, Mollic
Cambrisols) in areas underlain by high-yielding carbonate
aquifers, the catchments positively correlating with D2
usually feature a higher percentage of arable land, along with
higher and more stable loads of dissolved solids (including
total nitrogen, Ntot mean). On the other hand, the catchments
with negative correlation have a thicker Quaternary sedi-
mentary cover and are underlain by sandstone aquifers with
a greater depth to the groundwater level (i.e., a thicker vadose
zone). Quaternary cover thickness and deeper vadose zone
also contribute to higher groundwater protection values.

The above-described 70 parameters (Table 1) were further
analyzed using the AHC to classify the studied catchments.
The AHC classified the 42 catchments into four clusters (Fig. 2;
Table S1), which were named as follows: plateau (1), sand-
stone upland (2), carbonate upland (3), and lowland (4).

The plateau (1) cluster comprises the catchments with
relatively flat topography located on the Harju and Viru pla-
teaus, and the neighboring plains (Fig. 2). In terms of average
elevations, these watersheds fall between highlands and
lowlands (Fig. 3a). The common denominator of this cluster
is the articulation of the landscape (cuesta-like scarps, hill-
ocks, alvars, and mire basins, as described in Fig. 3), formed
during the gradual retreat of the earlier stages of the Baltic
Sea (Fig. 3e, g). The cluster, dominated by medium-yielding
carbonate aquifers (Fig. 3h), exhibits a combination of hydrol-
ogical characteristics resulting from the interaction between
mire basins with poor infiltration capacity and elevated
karstified bedrock hillocks (Fig. 3d). Due to the relatively thin
Quaternary cover (Fig. 3c), groundwater is generally rather
weakly protected (Fig. 3f). The important role of wetlands is
also indicated by CODMn mean values that are slightly
higher than in the upland clusters (as seen from the significant
contribution from the D1 factor in Tables 1 and S1).

The sandstone upland (2) cluster groups together the more
elevated (Fig. 3a) SE Estonian catchments (Fig. 2) with pro-
nounced gradients (Fig. 3b), underlain by sandstone aquifers
(Fig. 3h), and a relatively thick Quaternary cover (Fig. 3c).
These catchments exhibit a somewhat more damped hydrol-
ogical response due to the thick vadose zone and dominant
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intergranular porosity (Fig. 3d, h). Thus, these aquifers have
relatively well protected groundwater (Fig. 3f).

The carbonate upland (3) cluster comprises the catch-
ments of the Pandivere Upland (Fig. 2) in NE Estonia. These
catchments are characterized by a significant contribution of
high-yielding karst aquifers (Fig. 3d, h). Unlike the sandstone
upland (2) cluster, the thickness of the Quaternary cover is
significantly thinner, usually 2—-10 m (Fig. 3¢). Due to the
higher mean altitude of the catchments (Fig. 3a), there are
fewer glaciolacustrine sediments deposited, and the shares of
poorly drained depressions and peatlands are lower com-
pared to the plateau (1) and lowland (4) catchments. This leads
to more efficient infiltration but also makes the aquifers more
vulnerable, as manifested in groundwater quality (Fig. 3f).
As the upland has preferable conditions for agriculture, there
are problems with high nitrogen levels, as seen from the
significant contribution from the D2 factor (Tables 1 and S1).

The lowland (4) cluster represents the flat and low-lying
catchments (Fig. 3a, b) in W Estonian lowlands and the West
Estonian archipelago (Fig. 2). These areas have only rel-
atively recently emerged above the Baltic Sea level due to
post-glacial isostatic land uplift. In this cluster, carbonate
aquifers are dominant, especially in the higher areas of the
islands, where they can be fairly high-yielding (Fig. 3d, h).
Albeit with a similar thickness as in clusters 1 and 3 (Fig. 3c),
the Quaternary sedimentary cover here is more clayey than
in the higher areas, as evidenced by higher groundwater pro-
tection scores (Fig. 3f), and marine sediments also occur more
frequently (Fig. 3g). The land cover in the lowland (4) cluster
is dominated by peatlands and forests on artificially drained
peat soils (Fig. 3e, g). Therefore, the highest CODMn mean
values occur in this cluster, as seen from the significant
contribution from the D1 factor (Tables 1 and S1).

Noges et al. (2022) also clustered 16 Estonian surface
watersheds, using parameters such as catchment area, land
use, land cover, population density, etc., resulting in three
clusters. The authors then characterized the clusters with an em-
phasis on the manifestations of anthropogenic impact through
relevant nutrient loadings. The clustering was significantly
different from ours: rivers in the same cluster in some cases
did not have a clear resemblance, which would have resulted
from the similar hydrogeology or hydrological behavior of
the catchments. For example, some carbonate upland (3) and
sandstone upland (2) rivers fell into the same cluster.

3.2. The main statistical relationships of the focus
parameters

This chapter covers the general findings based on the 2012—
2022 mean values of the focus parameters (ACF, BFI, CCF,
and FDC). The emphasis is set on the streamflow regime, its
relationship with groundwater contributions to streamflow,
and the sensitivity of streamflow to groundwater recharge
signals. Spearman’s correlation analysis was performed to
evaluate the relationships of ACF, BFI, CCF, and FDC
metrics with other streamflow time series and catchment-
derived parameters, based on the mean values (n =42) for the
2012-2022 water year period. The correlation analysis results
are shown in Table S3.
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Fig. 2. Four catchment clusters separated using agglomerative hierarchical cluster analysis.

3.2.1. Autocorrelation function

Catchments exhibit a memory effect in streamflow, closely
linked to how they regulate discharge, as evidenced by the
strong correlation between ACF wy k and regulation time
(day) (p = 0.94, p < 0.05; Table S3) (Larocque et al. 1998).
This effect, indicative of catchment memory, is amplified in
systems with substantial effective storage and notable
groundwater contributions, as demonstrated by positive
correlations with BF runoff (p = 0.7, p < 0.05) and flatter
slopes of FDC <Q10 (p = 0.83, p <0.05). Interestingly, longer
ACF lags align with extended spring CCF lags (p = 0.83, p <

0.05), yet are inversely related to CCF r (p =—0.68; p =—0.63,
p < 0.05 for both), pointing to intricate seasonal dynamics.
Stable catchments exhibit a more pronounced streamflow
memory, emphasized by a negative correlation with ACF lag
CV (p = -0.67, p < 0.05). In addition, relationships with
specific geological features are seen. A significant positive
relationship was found between ACF lag and very high-
yielding carbonate aquifers (p = 0.52, p < 0.05), while
negative relationships were observed with thick Quaternary
cover (p =—0.56, p < 0.05) and the presence of sandstone
aquifers (p =-0.51, p < 0.05).
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catchments of Pandivere Upland were delineated, similar to our work.

3.2.2. Baseflow index

Baseflow mitigates streamflow variability, as shown by the
strong negative correlation of the BFI with measures such as
QCV (p =-0.97, p < 0.05) and SVC (p =-0.75, p < 0.05;
Table S3). Higher BFI values, indicating increased ground-
water contributions, buffer against extreme low flows, with
minimum streamflow values approaching the mean (Q MAM7/
Qmean: p=0.9, p <0.05; Q min/Q mean: p = 0.88, p <0.05).
This stability, often a function of substantial catchment
storage (positive correlation with £ max, p = 0.83, p <0.05),
manifests in damped responses to external stimuli. The

dampening effect is further reflected in correlations with CCF
metrics (p = 0.64; p = 0.42; p = 0.42; p < 0.05 for all) and
fewer drought days (p =—0.82, p <0.05).

3.2.3. Cross-correlation function

There was a general inverse relationship between ACF, BFI,
and BF runoff with respect to all four (mean, water year,
autumn, and spring) CCF r metrics (Table S3). Thus, in catch-
ments where the memory effect and baseflow contribution
are greater (i.e., streamflow regime is more stable), there
exists lower sensitivity to groundwater recharge events.
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Similarly, FDC <Q10 and regulation time also showed
negative correlations with all four CCF coefficient metrics
(Table S3). These negative correlations suggest that catch-
ments with damped high-flow responses have less pro-
nounced overall hydrological responses.

The general relationship between CCF coefficient metrics
and lags is inverse, indicating that as the strength of the as-
sociation between the recharge and streamflow signals in-
creases, the CCF lag decreases. ACF lags also tend to vary
more as the CCF lag time decreases (Table S3). The water-
yearly CCF wy r shows a significant negative correlation with
spring floods, CCF spring r (p = —0.84, p < 0.05), followed
by autumn floods, CCF autumn r (p =—0.68, p < 0.05). This
supports the claim that spring floods, generally caused by
snowmelt, are the most important hydrological events of the
water year, as also showed by Koit (2022) and Koit et al.
(2022).

3.2.4. Flow duration curve

Catchments with greater memory and longer regulation times
exhibited flatter slopes in high-flow conditions (FDC <Q10)
and relatively steeper slopes in median- to low-flow con-
ditions (FDC Q50—Q100). Such connections were evident in
the upland catchments (clusters 2 and 3), suggesting a pro-
longed release of water from relatively homogeneous reser-
voirs, such as productive aquifer systems, which sustain
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groundwater release over prolonged periods. In catchments
with less permeable surfaces and limited storage capacity,
steep FDC <Q10 slopes were observed, indicating rapid
changes and greater variability in streamflow. However, in
these catchments, the FDC “flattens out” in low-flow con-
ditions (FDC Q50—Q100) because, after rapid runoff during
high flows, the yield drops significantly, as the catchments
lack sufficient storage to sustain baseflow. Seasonal CCF
metrics (CCF spring r: p =—-0.71, p <0.05; CCF autumn r:
p=-0.78, p <0.05) showed strong negative correlations with
FDC <Q10 and positive correlations with FDC Q50—Q100.
CCF time lags, such as CCF wy k (water-yearly lag), showed
a similar pattern, with a positive correlation with FDC <Q10
and varied correlations with FDC Q50—Q100. This suggests
that catchments with longer CCF lags tend to have less vari-
ability in streamflow.

3.3. Differences between the clusters

The catchments in the plateau (1) cluster exhibited pro-
nounced memory effects in hydrological processes, with a
streamflow ACF lag averaging around 41.3 days (Fig. 4a).
The mean BFI value (0.65) suggests a relatively balanced
contribution from both surface runoff and baseflow, while the
contribution of the latter is still greater and more stable than
in lowland (4) catchments (Fig. 4b). This consistency is re-
flected in the CCF coefficients, where the plateau (1) cluster
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shows moderate correlation strengths (Fig. 4d, f, h, j), par-
ticularly in autumn and spring, and moderate lag times (k)
across all seasons (Fig. 4c, e, g, i). This is because the
catchments in this cluster are located at intermediate ele-
vations, featuring a balanced land cover: a mix of perched
peatland basins and thin-surfaced karstified carbonate hill-
ocks (Fig. 3e, g). The mean CCF lag is 2.7 days, second only
to the lowland (4) cluster (Fig. 4c, d), which shows the
relatively high hydrological sensitivity of the plateau catch-
ments. Additionally, the plateau (1) cluster ranks second only
to the lowland (4) cluster, based on the number of drought
days (Fig. 5c).

The sandstone upland (2) catchments featured a relatively
short mean memory effect, with an average streamflow ACF
lag of 34.4 days (Fig. 4a). However, they featured a high
BFI (Fig. 4b) of around 0.73, and high £ max values (Fig. 6a),
implying significant groundwater contributions from relatively
permeable bedrock formations with great storage capacity.
The latter somewhat contradict the unexpectedly low ACF
lag values of the sandstone upland (2) cluster and the general
theory behind the streamflow memory effect. This anomaly
results from the peculiar hydrological regime of the sandstone
upland (2) catchments (Fig. 6). During the spring floods, the
biggest peaks of the water year, the response in these
catchments can be as rapid as in the lowland (4) catchments.
This is reflected by similar means in FDC <Q10 values
(Fig. 4k) and the shortest spring CCF lags (Fig. 4i), which

in the uplands is most likely caused by the greater gradients
(Fig. 3b) and steeper slopes, as indicated by the great devi-
ation in catchment elevation (Fig. 3a). In some cases, the
relative spring quickflow flashiness is further amplified by
the poor permeability of the thick Quaternary cover layer.

However, the catchments in the sandstone upland (2)
exhibit by far the highest and most stable Q MAM?7 values
and the highest Q MAM7/Q mean ratio values (Figs 5d and
6b), even surpassing the water-rich carbonate upland (3)
catchments. This reflects the significant buffering effect of
the sandstone aquifers, resulting in a stable and sustained
baseflow drainage regime (Fig. 5d). At the same time, the
sandstone upland (2) catchments are relatively ineffective
(low ECI) and least affected by evapotranspiration during the
summer seasons (Fig. 5b, e, f).

The carbonate upland (3) cluster stands out with the
longest streamflow ACF lags, averaging around 48.5 days
(Fig. 4a). The highest BFI value (Fig. 4b) among the clusters
suggests catchments with significant groundwater storage
capacity. Longer regulation times (see Table S2) signify an
extended period for the system to reach equilibrium after a
recharge event. This emphasizes the buffered dynamics of the
catchments in the cluster. This cluster also shows the longest
CCF lags (Fig. 4c, e, g, 1) and the lowest CCF coefficients
(Fig. 4d, f, h, j) across all seasons, signifying a delayed system
response. These catchments receive an important ground-
water contribution from high- to very high-yielding carbonate
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aquifers, covered by a relatively thin layer of Quaternary
sediments (Fig. 3h, d). Infiltration is diffuse in these relatively
flat but elevated and well-drained watersheds, which in turn
contributes to the modest CCF response but also ensures en-
hanced groundwater recharge capacity in the catchments,
reaching over 0.44 mm/d, as noted by Jaagus et al. (1998).
Due to the stable baseflow regime, there were practically no
drought days in either of the upland clusters (Fig. 5c).

Catchments in the lowland (4) cluster exhibit short stream-
flow ACF lags, averaging 34.5 days (Fig. 4a). The dominance
of surface runoff is indicated by the lowest BFI, around 0.55
(Fig. 4b). The importance of surface runoff and the lower
intensity of groundwater recharge in the catchments of the
lowland (4) cluster, e.g., in Vihterpalu and Laadi, was also
shown by Jaagus et al. (1998) in their modeling results. The
lowland (4) cluster also showed the highest median CCF
coefficients (r) across all seasons (Fig. 4d, f, h, j), demon-
strating a strong correlation between the streamflow and
recharge signal. The lowest average CCF lag (except in
spring, when sandstone upland (2) catchments can be more
responsive) suggests rapid catchment responses (Fig. 4c, e,
g, 1) due to the more impermeable geology and/or land cover
dominated by peatland basins. The surface runoff dominance
is also indicated by the high efficiency of the catchments
in the lowland (4) cluster (Fig. Se, f) and the significantly
strong correlation between the mean CCF coefficient and
precipitation elasticity to runoff (p = 0.88, p < 0.05; Table S4).
The hydrological sensitivity of the lowland (4) cluster is
summed up by the highest mean number of drought days
(Fig. 5¢).

3.4. Determining hydroclimatic drivers of focus
parameter variability

To evaluate the variability of the focus parameters between

water years and their dependence on selected hydroclimatic

parameters listed in Table 2, the LightGBM model was used.

The standardized (rescaled 0—1) SHAP values are shown in
Table 3, and the observed versus predicted values of the focus
parameters are shown in Fig. 7.

General hydroclimatic parameters, such as the sum of
precipitation, evaporation, and associated hydrological ratios,
showed low impacts on predictions for ACF lag and CCF
metrics (Table 3). This suggests that while these parameters
are the main drivers of hydrological processes, their direct
short-term impact on streamflow characteristics may be less
pronounced. The model placed considerable emphasis on air
temperature and water temperature, as the latter is directly
dependent on the former (p = 0.45, p < 0.05; Table S5), for
capturing hydrological processes related to the focus para-
meters (Tables 3 and S5). Air temperature, particularly its
minimum, maximum, and variation values, emerged as a
pivotal factor across multiple focus parameters (Table 3).

Significant deviations in air temperature from mean
values, trending towards warmer conditions, are associated
with ACF lags, which is also reflected, e.g. in the overall
importance of water temperature variation (Water temp CV
in Table 3). Mean air temperature is closely related to the
various aspects of snowpack: higher mean air tempera-
tures correspond to decreases in SDE and SWE (p = —0.67;
p=-0.71, p <0.05 for both; Table S5). Higher air temperature
(min, max, mean, and deviation) was positively related to
longer ACF lags (p = 0.42, p <0.05; Table S5), as clearly seen
in the 2020 water year (Fig. 8). However, a water year with
significant snowpack and abrupt spring snowmelt, such as
2013, produced shorter ACF lags (Fig. 8). The importance of
snow-related parameters in Table 3, such as the mean SDE,
SWE, and the previous water year’s SWE, highlights the
great influence of snowpack dynamics, compared to annual
precipitation amounts, on predicting the streamflow char-
acteristics quantified by the ACF, CCF, FDC, and BFI metrics.
A weak but significant negative correlation (p = —0.11,
p < 0.05; Table S5) hints that higher precipitation amounts



Table 2. Hydrometeorological statistics for the 2012-2022 water years. Precipitation and air temperature deviations from the mean are calculated for the 2012-2022 water year period (n = 11)
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may be associated with shorter ACF lags, possibly due to
increased runoff and more frequent and quicker hydrological
responses. At the same time, precipitation conditions of
the previous water year, which affect antecedent moisture
conditions, appear to be even more important than current
precipitation amounts (p =—0.15; p =—0.29, p <0.05 for both;
Table S5).

The results showed that the CCF metrics of the water year
(CCF wy) are most closely related to the CCF properties
(strength and lag) of the spring half-year (CCF spring), fol-
lowed by autumn floods (CCF autumn) (Tables 3 and S5).
This suggest that significant snowmelt events, primarily in
spring but sometimes also in the autumn season (early
snowmelt), are decisive in shaping the hydrological regime.

In the example of the wet but snowless 2020 water year
(Fig. 8), the scattered CCF and ACF metrics indicate greater
variability in hydrological responses. This is especially evi-
dent in the CCF spring responses (Fig. 8), reflecting the
broader dispersion of responses due to the lack of a strong
and uniform snowmelt signal. As winter precipitation is
projected to increase (Coppola et al. 2021; Jaagus and Méandla
2014; Ruosteenoja and Jylhd 2021), and rising air tempera-
tures (2.5-3.8 °C in winter and 2.0-3.4 °C in summer) are
expected to reduce snowpack while increasing water surplus
in colder seasons (Barnett et al. 2005; Okkonen et al. 2011),
hydrological variability is expected to increase in the coming
decades.

Preceding moisture conditions (previous water year SWE
and precipitation) can also have a significant effect (Table 3).
Snowpack and snowmelt dynamics can affect a wide variety
of parameters in the following water year. Koit et al. (2022)
showed that autumn CCFs best highlighted and characterized
the sensitivity and responsiveness of aquifers interacting with
surface catchments, as supported by the relatively higher CCF
autumn r values (Fig. 8). This is because in autumn, aquifers
and associated catchments recover from the summer low
flow/drought period without the masking effect of snowmelt
(see 2013 and 2018 vs. 2020 in Fig. 8). While seasonal CCFs
provide valuable insights into hydroclimatic variability, the
mean CCFs (CCF mean), calculated for the entire period of
2012-2022, were less sensitive to calculation anomalies,
capturing the overall hydrological sensitivity of a catchment
with sufficient detail. This makes them more suitable for
catchment classification.

As seen from the SHAP values for FDC <Q10 (Table 3),
high-flow conditions are predominantly influenced by snow-
pack conditions and air temperature. The more negative FDC
<Q10 values during the 2013 water year (Fig. 8), which
correspond to steeper limbs of flood peaks, can be attributed
to abrupt spring snowmelt and ice-damming (Estonian
Environment Agency 2014). The sandstone upland (2) catch-
ments stand out in particular, exhibiting the most negative
values.

During the snow-rich 2013 water year, the mean BFI
value approached 0.5, indicating a greater contribution of
surface runoff (Fig. 8). The decrease in BFI values was par-
ticularly significant in the lowland (4) cluster, which testifies
to the greater role of surface runoff during snowy years (in
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Fig. 8. Mean hydrometeorological indicators and kernel density estimation plots of the focus parameters (ACF wy k, BFI, CCF wy k,
CCF wy r, CCF autumn k, CCF autumn r, CCF spring k, CCF spring r, FDC <Q10, and FDC Q50-Q100) of the plateau (1), sandstone upland (2),
carbonate upland (3), and lowland (4) clusters in the 2013, 2018, and 2020 water years.



the case of abrupt snowmelt). Conversely, in the dry 2018
water year, baseflow became more prominent (Fig. 8), as seen
from elevated BFI values. Low to mid-flow conditions (FDC
Q50-Q100 in Table 3) were significantly influenced by the
hydrological balance and extreme conditions, such as drought.
In dry years (2013 and 2018), FDC Q50-Q100 slopes were
more likely to be flat (fewer negative values), especially in
the lowland (4) cluster (Fig. 8). Flatter FDC Q50-Q100
slopes occur during longer periods when water bodies rely
mainly on baseflow, or even dry up completely. This was also
reflected in BFI values (Table 3), which were influenced by
extreme conditions (drought days) and water temperature
variability.

The hydrological sensitivity of Estonian catchments is
most clearly manifested in the influence exerted by winter-
spring snow dynamics and droughts, as demonstrated by the
influence of air temperature and precipitation deviations,
along with the number of drought days, on focus parameters.
This aligns with previous studies in Estonia, which have
analyzed the water balance of Estonian catchments and long-
term interdependence between atmospheric conditions and
river runoff (Roosaare et al. 1998; Jaagus et al. 2017; Kotta
et al. 2018). These studies found that historical changes in
Estonian river runoff generally coincided with variations in
air temperature and snow cover duration, caused by changes
in atmospheric circulation during the winter season. In
addition, it has been shown that long-term (multi-decadal)
regime shifts in river runoff corresponded to the alternation
of wet and dry periods (Jaagus et al. 2017). As snow cover
duration in the region is projected to decrease and air tem-
peratures increase, climate change will thus lead to significant
alterations in the hydrological regime in the region, including
a decrease in spring floods and higher discharge in autumn
and winter due to winter rains (Meier et al. 2022). However,
as shown by this study, the direct effects of temperature and
precipitation changes on specific catchment runoff remain
unclear, as they will act in combination and depend strongly
on the local factors (Stahl et al. 2010).

4. Conclusions

We assessed the intricate interplay between hydroclimatic
factors and hydrological sensitivity across different catchment
types in Estonia. By employing advanced statistical and ma-
chine learning techniques, such as LightGBM modeling sup-
ported by SHAP value interpretations, the study revealed the
nuanced influences of air temperature, snowpack dynamics,
and preceding hydrological conditions on streamflow char-
acteristics.

Catchments with significant groundwater contributions
and effective storage, particularly in the upland clusters,
showed slightly different behavior in terms of memory effects
and hydrological responses depending on geological con-
ditions, while other parameters rather supported their high
buffering capacity and drought resistance. Conversely, low-
land cluster catchments, where soils with poor infiltration
capacity, peatlands, and artificial drainage are widespread,
displayed higher sensitivity and quicker responses to hydro-
climatic variability.

Hydrological sensitivity in Estonian catchments 17

The study also underscores the importance of air tem-
perature and snowpack conditions in modulating streamflow,
particularly in shaping high-flow conditions and baseflow
contributions. It suggests that air temperature, through its
influence on water temperature and snowpack dynamics, has
a strong bearing on streamflow responses.

Additionally, the results demonstrate that the short- to
medium-scale hydrological sensitivity of catchments is not
solely dictated by immediate precipitation and evaporation
dynamics but is also significantly influenced by antecedent
moisture conditions from the previous water year. This under-
standing has profound implications for water resource man-
agement, especially in the face of climate variability and
change.

This study contributes to the broader understanding of
hydrological processes by revealing the varying degrees of
catchment sensitivity to hydroclimatic changes, serving as a
valuable resource for future research and policy-making in
hydrological and environmental planning. The nuanced char-
acterizations of catchment responses derived from this re-
search can inform targeted strategies to mitigate the impacts
of extreme hydrological events, thereby enhancing the re-
silience of water resource systems against the backdrop of a
changing climate. These findings will also help in designing
measures to preserve and achieve the good status of ground-
water and surface water bodies, as set out in the EU Water
Framework Directive (European Commission 2000), under
evolving climatic conditions.

Some detailed considerations:

e ACF lag is a robust and informative parameter that in-
tegrates hydroclimatic, hydrologic, and hydrogeologic
influences, while being relatively easy to calculate. How-
ever, other supporting parameters are needed to fully
understand the hydrological behavior of a watershed.

e Although the length of the ACF lag can be generally
interpreted as a measure of hydrological inertia, there may
be deviations from the general understanding in certain
cases, as was evident in the sandstone upland (2) catch-
ments. In these cases, other parameters must also be used
to support the interpretation of the memory effect and to
highlight the characteristics of the hydrograph, which may
remain hidden when relying solely on ACF data.

e Contrary to intuition, the longest ACF lags were observed
during dry and droughty water years, not necessarily in
water years with lots of precipitation, storm events, or
snowmelt that typically generate the most groundwater
recharge. The long lags would be caused by the uninter-
rupted length of streamflow recession during extended
low flow periods. In contrast, wet years with repeated
flood events alternate with shorter recession periods,
producing shorter overall ACF lags.

e CCF is excellent in showing streamflow response/
sensitivity to recharge events; however, their automatic
calculation requires precaution. Calculation results be-
come more uncertain as the observation period shortens.
The timing of individual flood events and their position-
ing in the calculation “window” has a decisive impact on
the calculation of seasonal CCF.
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e The FDC segments, especially the extremes such as FDC
<Q10 and the median—high flows (FDC Q50-Q100),
provide a stark contrast in catchment responses to high-
and low-flow conditions. These parameters indicate the
variability and stability of streamflow, with high-flow
conditions influenced by factors such as snowmelt and air
temperature, while low- to mid-flow conditions reflect the
hydrological balance and the catchment’s ability to sustain
baseflow during dry periods.

e [t is constructive to note that the sensitivity of these
parameters to hydroclimatic factors can significantly af-
fect water resource management strategies. For instance,
a catchment with a high BFI and prolonged ACF lags
suggests a system with significant groundwater influence,
likely to be resilient to short-term climatic variations but
potentially vulnerable to long-term climate shifts that
could alter groundwater recharge patterns. In contrast,
catchments with short CCF lags and steep FDC slopes
during high flows may require careful monitoring for
flood risks, while those with flatter FDC curves during
low flows will need strategies to combat drought impacts.
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Kliima muutlikkusest tingitud hidroloogiline tundlikkus Eesti valgaladel:
parasvootme pohjapoolne perspektiiv

Oliver Koit, Joonas Parn, Marlen Hunt, Siim Tarros, Elve Lode ja Pamela Abreldaal

Globaalne kliimamuutus md&jutab markimisvaarselt piirkondlikke hidroloogilisi stisteeme, eriti pdhjapoolsetes
parasvootme riikides nagu Eesti. Uurimus kasitleb Eesti valgalade hiidroloogilist tundlikkust klimamuutuste
suhtes, keskendudes pinna- ja p&hjavee koosmdju ilmingutele. T6ds kasutatakse 42 j6e hiidromeetriajaama
aravoolu ja valgala andmeid ning rakendatakse erinevaid hiidroloogilis-statistilisi meetodeid. Analtitis héImab
2012.-2022. veeaasta hiudroloogilisi, ruumilisi ja veekvaliteedi andmeid. Suuremat tdhelepanu pddratakse ara-
voolu autokorrelatsioonifunktsiooni (ACF), ristkorrelatsioonifunktsiooni (CCF), baasvooluindeksi (BFI) ja voolu
kestuse kdvera (FDC) tulemustele ning nende seotusele teiste valgala parameetritega. Valgalade hidroloogilise
iseloomu jargi saab need jagada nelja klastrisse: platoo, liivakivi kdrgustik, karbonaatkivimi kdrgustik ja madalik.
T6O6 tulemustest selgub, kuidas erinevad valgalade klastrites @ravoolu tundlikkus toite- siindmuste suhtes,
baasvoolu dlinaamika, autokorrelatsioonifunktsiooni kirjeldatav ,maluefekt” ja naiteks ka pduapédevade arv.
LightGBM gradienti suurendava masindppe mudeli abil tuuakse esile 8hutemperatuuri ja lumikatte suur méju
hidroloogilisele tundlikkusele. Uurimus naitab Eesti valgalade erinevat hiidroloogilist tundlikkust hiidrokliimaa-
tiliste muutuste suhtes, rohutades valgala spetsiifiliste omaduste arvestamise tahtsust veevarude majandamisel
ja poliitika kujundamisel. T06 panustab laiemasse arusaama hiidroloogilistest protsessidest ning annab vaartus-
likku teavet tulevasteks teadusuuringuteks ja keskkonnaplaneerimiseks kliimamuutuse tingimustes.




